scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Development and validation of a new TRNSYS type for the simulation of thermoelectric generators

01 Dec 2014-Applied Energy (Elsevier)-Vol. 134, pp 65-74
TL;DR: In this paper, a new numerical transient simulation tool for thermoelectric generators (TEGs) is presented, which can be used as a design tool and validated using experimental data.
About: This article is published in Applied Energy.The article was published on 2014-12-01. It has received 47 citations till now. The article focuses on the topics: Thermoelectric generator & TRNSYS.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive review of thermoelectric (TE) technology encompassing the materials, applications, modelling techniques and performance improvement is carried out, including output power conditioning techniques.
Abstract: Thermoelectric (TE) technology is regarded as alternative and environmentally friendly technology for harvesting and recovering heat which is directly converted into electrical energy using thermoelectric generators (TEG). Conversely, Peltier coolers and heaters are utilized to convert electrical energy into heat energy for cooling and heating purposes The main challenge lying behind the TE technology is the low efficiency of these devices mainly due to low figure of merit (ZT) of the materials used in making them as well as improper setting of the TE systems. The objective of this work is to carry out a comprehensive review of TE technology encompassing the materials, applications, modelling techniques and performance improvement. The paper has covered a wide range of topics related to TE technology subject area including the output power conditioning techniques. The review reveals some important critical aspects regarding TE device application and performance improvement. It is observed that the intensified research into TE technology has led to an outstanding increase in ZT, rendering the use TE devices in diversified application a reality. Not only does the TE material research and TE device geometrical adjustment contributed to TE device performance improvement, but also the use of advanced TE mathematical models which have facilitated appropriate segmentation TE modules using different materials and design of integrated TE devices. TE devices are observed to have booming applications in cooling, heating, electric power generation as well as hybrid applications. With the generation of electric energy using TEG, not only does the waste heat provide heat source but also other energy sources like solar, geothermal, biomass, infra-red radiation have gained increased utilization in TE based systems. However, the main challenge remains in striking the balance between the conflicting parameters; ZT and power factor, when designing and optimizing advanced TE materials. Hence more research is necessary to overcome this and other challenge so that the performance TE device can be improved further.

398 citations


Cites methods from "Development and validation of a new..."

  • ...Similarly, a numerical transient simulation tool based on TRNSYS is used to assess and optimize TEG in real applications [92]....

    [...]

Journal ArticleDOI
01 Feb 2021
TL;DR: In-depth analysis of TEGs is presented, beginning with a comprehensive overview of their working principles such as the Seebeck effect, the Peltier effect,The Thomson effect and Joule heating with their applications, materials used, Figure of Merit, improvement techniques including different thermoelectric material arrangements and technologies used and substrate types.
Abstract: Nowadays humans are facing difficult issues, such as increasing power costs, environmental pollution and global warming. In order to reduce their consequences, scientists are concentrating on improving power generators focused on energy harvesting. Thermoelectric generators (TEGs) have demonstrated their capacity to transform thermal energy directly into electric power through the Seebeck effect. Due to the unique advantages they present, thermoelectric systems have emerged during the last decade as a promising alternative among other technologies for green power production. In this regard, thermoelectric device output prediction is important both for determining the future use of this new technology and for specifying the key design parameters of thermoelectric generators and systems. Moreover, TEGs are environmentally safe, work quietly as they do not include mechanical mechanisms or rotating elements and can be manufactured on a broad variety of substrates such as silicon, polymers and ceramics. In addition, TEGs are position-independent, have a long working life and are ideal for bulk and compact applications. Furthermore, Thermoelectric generators have been found as a viable solution for direct generation of electricity from waste heat in industrial processes. This paper presents in-depth analysis of TEGs, beginning with a comprehensive overview of their working principles such as the Seebeck effect, the Peltier effect, the Thomson effect and Joule heating with their applications, materials used, Figure of Merit, improvement techniques including different thermoelectric material arrangements and technologies used and substrate types. Moreover, performance simulation examples such as COMSOL Multiphysics and ANSYS-Computational Fluid Dynamics are investigated.

131 citations


Additional excerpts

  • ...(5) for optimal electrical charge [85]:...

    [...]

Journal ArticleDOI
01 Apr 2013-Energy
TL;DR: Based on the thermoelectric effect and heat transfer theory, a dynamic model for waste heat recovery in a general TEG was developed to asses the influence of heat reservoir and heat sink as mentioned in this paper.

122 citations

Journal ArticleDOI
TL;DR: In this paper, the authors would like to thank the Spanish Ministry of Economy and Competitiveness, and European Regional Development Fund for providing funding for this work included in the DPI2011-24287 research project.

104 citations

Journal ArticleDOI
Shiho Kim1
TL;DR: In this article, the authors derived an analytic model describing the interior temperature difference as a function of the load current of a thermoelectric generator (TEG); they also proposed a method to extract the intrinsic and extrinsic Seebeck coefficients and resistances of TEG using experimental currentvoltage curves.

81 citations

References
More filters
Journal ArticleDOI
11 Oct 2001-Nature
TL;DR: Th thin-film thermoelectric materials are reported that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys, and the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications.
Abstract: Thermoelectric materials are of interest for applications as heat pumps and power generators. The performance of thermoelectric devices is quantified by a figure of merit, ZT, where Z is a measure of a material's thermoelectric properties and T is the absolute temperature. A material with a figure of merit of around unity was first reported over four decades ago, but since then-despite investigation of various approaches-there has been only modest progress in finding materials with enhanced ZT values at room temperature. Here we report thin-film thermoelectric materials that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys. This amounts to a maximum observed factor of approximately 2.4 for our p-type Bi2Te3/Sb2Te3 superlattice devices. The enhancement is achieved by controlling the transport of phonons and electrons in the superlattices. Preliminary devices exhibit significant cooling (32 K at around room temperature) and the potential to pump a heat flux of up to 700 W cm-2; the localized cooling and heating occurs some 23,000 times faster than in bulk devices. We anticipate that the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications: for example, in thermochemistry-on-a-chip, DNA microarrays, fibre-optic switches and microelectrothermal systems.

4,921 citations

Journal ArticleDOI
10 Jan 2008-Nature
TL;DR: Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects, and these results are expected to apply to other classes of semiconductor nanomaterials.
Abstract: Thermoelectric materials, capable of converting a thermal gradient to an electric field and vice versa, could be useful in power generation and refrigeration. But the fabrication of the available high-performance thermoelectric materials is not easily scaled up to the volumes needed for large-scale heat energy scavenging applications. Nanostructuring improves thermoelectric capabilities of some materials, but good thermoelectric materials tend not to take readily to nanostructuring. How about silicon? It can be processed on a large scale but has poor thermoelectric properties. Two groups now show that silicon's thermoelectric properties can be vastly improved by structuring it into arrays of nanowires and carefully controlling nanowire morphology and doping. So with more development, silicon may have potential as a thermoelectric material. Thermoelectric materials interconvert thermal gradients and electric fields for power generation or for refrigeration1,2. Thermoelectrics currently find only niche applications because of their limited efficiency, which is measured by the dimensionless parameter ZT—a function of the Seebeck coefficient or thermoelectric power, and of the electrical and thermal conductivities. Maximizing ZT is challenging because optimizing one physical parameter often adversely affects another3. Several groups have achieved significant improvements in ZT through multi-component nanostructured thermoelectrics4,5,6, such as Bi2Te3/Sb2Te3 thin-film superlattices, or embedded PbSeTe quantum dot superlattices. Here we report efficient thermoelectric performance from the single-component system of silicon nanowires for cross-sectional areas of 10 nm × 20 nm and 20 nm × 20 nm. By varying the nanowire size and impurity doping levels, ZT values representing an approximately 100-fold improvement over bulk Si are achieved over a broad temperature range, including ZT ≈ 1 at 200 K. Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects. These results are expected to apply to other classes of semiconductor nanomaterials.

2,557 citations

Journal ArticleDOI
TL;DR: In this paper, basic knowledge of the thermoelectric devices and an overview of these applications are given, and the prospects of the applications of the thermal devices are also discussed.

1,259 citations

Journal ArticleDOI
TL;DR: In this article, a low-temperature waste heat thermoelectric generator setup has been constructed to investigate viability and further performance of the generator for waste heat recovery in industry area.

429 citations

Journal ArticleDOI
01 Mar 2010-Energy
TL;DR: In this paper, a thermoelectric module composed of TEGs and a cooling system is developed to improve the efficiency of an IC engine, and two potential positions on an automobile are chosen to apply this module, e.g. exhaust pipe and radiator, to examine the feasibility.

323 citations