scispace - formally typeset

Journal Article

Development of a Lipid Particle for β-Carotene Encapsulation Using a Blend of Tristearin and Sunflower Oil: Choice of Lipid Matrix and Evaluation of Shelf Life of Dispersions

09 Sep 2013-Food Technology and Biotechnology (University of Zagreb, Faculty of Food Technology and Biotechnology (Sveuciliste u Zagrebu, Prehrambeno-Biotechnolosk i Fakultet))-Vol. 51, Iss: 3, pp 383-391

AbstractSummary Solid lipid particles are colloidal carriers that have been studied for almost 20 years in the pharmaceutical field and recently have been investigated by food researchers due to their capacity to enhance the incorporation of lipophilic bioactives and their bioavailability in aqueous formulations. The aims of this study are to choose a suitable lipid matrix to produce solid lipid particles, which would be used to encapsulate b-carotene, and to evaluate the capacity of dispersions to protect the incorporated carotenoid. Bulk lipid mixtures of tristearin and sunflower oil were analysed by differential scanning calorimetry and wide angle X-ray diffraction, and the mixture with the highest degree of structural disorganisation was chosen. b-Carotene was then encapsulated in solid lipid particles produced with this mixture, composed of 70 % tristearin and 30 % sunflower oil (6 % total lipid) and stabilised with hydrogenated soy lecithin and Tween 80 (3 % total surfactant) by hot pressure homogenisation. Two types of particles were produced, using one or two passages in the homogenisation step. Average particle size, zeta potential, thermal behaviour, crystallinity and b-carotene concentration were monitored over 4 months of storage (under refrigerated conditions). The results showed minor differences between the systems in terms of size distribution, although the particles produced with one passage through the homogeniser were slightly more efficient at protecting the b-carotene from degradation and also suffered few microstructural alterations after 4 months.

Topics: Lipid particle (60%), Particle size (55%), Sunflower oil (55%), Cold storage (51%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: This review evaluates recent advances in the development of phytochemical oral delivery systems, including microemulsions, nanoemulsion, emulsion, solid lipid nanoparticles, liposomes, and biopolymer microgels.
Abstract: Application of bioactive phytochemicals in foods, supplements, and pharmaceuticals is often limited because of their poor solubility, stability, and bioavailability. Phytochemical oral delivery systems (PODS), consisting of phytochemical-loaded nanoparticles or microparticles, can overcome these challenges. PODS can be produced in liquid, gel, paste, or solid forms. They must be carefully formulated to be compatible with the product matrix, economical, robust, and maintain phytochemical bioactivity. This review evaluates recent advances in the development of PODS, including microemulsions, nanoemulsions, emulsions, solid lipid nanoparticles, liposomes, and biopolymer microgels. Properly designed PODS will increase phytochemical applications in commercial products.

85 citations


Journal ArticleDOI
Abstract: A nanoparticlulate delivery system was prepared for developing a food grade carrier for the major bioactive constituent in green tea; (─)-epigallocatechingallate (EGCG), in order to protect it against degradation during storage and digestion under simulated gastrointestinal pH conditions EGCG-loaded solid lipid nanoparticles (EGCG-SLNs) were produced by the hot homogenization method The lipid matrix used in the production consisted of pure cocoa butter A combination of sodium stearoyl-2-lactylate (SSL) and mono- and diglycerides (MDG) was applied as a surfactant blend The nanoparticles loaded with different concentrations of EGCG had an average particle size in the range of 108–122 nm A maximal encapsulation efficiency of 685% was obtained The produced food grade SLNs successfully protected the encapsulated EGCG along the storage period as well as under the adverse conditions at neutral pH values The developed system offers good potential for enriching food products with EGCG

33 citations


Journal ArticleDOI
Abstract: Microencapsulation is currently used by the food industry for different purposes, including the protection of ingredients against factors such as oxidation and volatilization, as well as to increase the bioavailability and bioaccessibility of nutrients. The current study aimed to encapsulate beta-carotene in solid lipid microparticles stabilized with whey protein isolate (WPI), and also investigate their integrity during storage and under stress conditions such as different ionic strengths, sucrose concentrations and thermal treatments. Solid lipid microparticles were produced using palm stearin, a food grade vegetable fat, using a single-step high shear process. Of the different formulations used for lipid microparticle production, characterization studies showed that the greatest stability was obtained with systems produced using 1.25% (w/v) whey protein isolate, 5% (w/v) palm stearin and 0.2% (w/v) xanthan gum. This formulation was applied for the production of beta-carotene-loaded solid lipid microparticles, with different concentrations of alpha-tocopherol, in order to verify its possible antioxidant activity. The results showed that the addition of alpha-tocopherol to the dispersions provided an increase in encapsulation efficiency after 40 days of storage that ranged from 29.4% to 30.8% when compared to the system without it. Furthermore, the solid lipid microparticles remained stable even when submitted to high ionic strength and to heating in the proposed temperature range (40 °C to 80 °C), highlighting their feasible application under typical food processing conditions.

29 citations


Cites background from "Development of a Lipid Particle for..."

  • ...These pro-oxidant agents may have been able to continue reacting and feed the auto-oxidation reactions of beta-carotene (GOMES et al., 2013a)....

    [...]

  • ...Other studies have already recognized the essential presence of an antioxidant such as alpha-tocopherol as a protector of beta-carotene in lipid carriers (HENTSCHEL et al., 2008; GOMES et al., 2013a, 2017; BRITO-OLIVEIRA et al., 2017)....

    [...]

  • ...In addition, if this type of carrier is designed in the micrometric range, it can present lower production costs compared to lipid nanoparticles, since there is no need for equipment such as high pressure homogenizers or microfluidizers (GOMES et al., 2013a; SILVA et al., 2014)....

    [...]

  • ...Some studies found in the literature stress the need to add an antioxidant to systems encapsulating beta-carotene (GOMES et al., 2013a,b)....

    [...]


Journal ArticleDOI
Abstract: Beta-carotene is a carotenoid with a wide spectrum of biological activities (e.g., anti-cancer, anti-hypertensive, and anti-inflammatory). However, because of its extremely high hydrophobicity, it is difficult to incorporate in food formulations and its bioavailability is fairly low. Lipid-based encapsulation colloidal systems such as lipid nanoparticles can help overcome these issues. In this study, beta-carotene-loaded lipid nanoparticles were produced by the phase inversion temperature (PIT) method from 10% cupuacu butter and 20% surfactant (Cremophor RH40 and Span 80). The inversion temperature of the nanoparticles was 74 °C and their average diameter was 35 nm. After 100 days of storage, 85% of the initial amount of beta-carotene remained in the nanoparticles; alpha-tocopherol was found to be essential for carotenoid preservation. Comparison of the results of in vitro digestion between static and dynamic systems was performed, and the characteristics of each digestion system led to diverse results in terms of average particle size and beta-carotene bioaccessibility. Although the static system was much simpler than the dynamic system, it could not provide reliable data of the digestibility of the lipid nanoparticles. The bioaccessibility of beta-carotene in the static system was 92%, very similar to the results found in the literature; by comparison, the dynamic system revealed a beta-carotene bioaccessibility of nearly 20%. Despite this discrepancy, the highly realistic conditions of digestion simulated by the dynamic in vitro system indicate that the results of this system are more reliable than those obtained from the simplified static system applied in this research.

29 citations


Cites background from "Development of a Lipid Particle for..."

  • ...The need for coencapsulation with an antioxidant to protect encapsulated beta-carotene has been also realized in other studies (Hentschel et al., 2008; Tikekar et al., 2011; Gomes et al., 2013)....

    [...]


Journal ArticleDOI
TL;DR: These stable NLC particles produced from rambutan kernel fat may serve as useful carriers for the delivery of bioactive lipophilic nutraceuticals and pre-solidification at 5°C could createstable NLC with monodispersed-spherical lipid particles.
Abstract: Nanostructured lipid carrier (NLC) was fabricated from rambutan (Nephelium lappaceum L.) kernel fat stabilized with Tween 80 in this present work. The influence of the Tween 80 concentration (0.025, 0.05, 0.1, 0.2, 0.5 and 1.0wt%) and solidification temperature (5 and 25°C) on the characteristics and stability of the NLC were investigated. The results showed that an increase in the Tween 80 concentration caused decreased zeta-potential (ζ-potential) and particle size (Z-average) with no significant effect on the polydispersity index (PDI). Lipid particles in the NLC at all Tween 80 concentrations had a tendency to grow and the PDI tended to increase due to Ostwald ripening upon storage over 28days. At least 0.2wt% Tween 80 concentrations could be used to stabilize 1wt% rambutan NLC. The solidification temperature affected the microstructure, melting behavior and stability of rambutan NLC. Pre-solidification at 5°C could create stable NLC with monodispersed-spherical lipid particles. Consequently, these stable NLC particles produced from rambutan kernel fat may serve as useful carriers for the delivery of bioactive lipophilic nutraceuticals.

28 citations


References
More filters

Journal ArticleDOI
TL;DR: Relevant issues for the introduction of SLN to the pharmaceutical market, such as status of excipients, toxicity/tolerability aspects and sterilization and long-term stability including industrial large scale production are discussed.
Abstract: Solid lipid nanoparticles (SLN) introduced in 1991 represent an alternative carrier system to traditional colloidal carriers, such as emulsions, liposomes and polymeric micro- and nanoparticles. SLN combine advantages of the traditional systems but avoid some of their major disadvantages. This paper reviews the present state of the art regarding production techniques for SLN, drug incorporation, loading capacity and drug release, especially focusing on drug release mechanisms. Relevant issues for the introduction of SLN to the pharmaceutical market, such as status of excipients, toxicity/tolerability aspects and sterilization and long-term stability including industrial large scale production are also discussed. The potential of SLN to be exploited for the different administration routes is highlighted. References of the most relevant literature published by various research groups around the world are provided.

2,970 citations


Journal ArticleDOI
TL;DR: An overview about the selection of the ingredients, different ways of SLN production and SLN applications, and the in vivo fate of the carrier are presented.
Abstract: Solid lipid nanoparticles (SLN) have attracted increasing attention during recent years This paper presents an overview about the selection of the ingredients, different ways of SLN production and SLN applications Aspects of SLN stability and possibilities of SLN stabilization by lyophilization and spray drying are discussed Special attention is paid to the relation between drug incorporation and the complexity of SLN dispersions, which includes the presence of alternative colloidal structures (liposomes, micelles, drug nanosuspensions, mixed micelles, liquid crystals) and the physical state of the lipid (supercooled melts, different lipid modifications) Appropriate analytical methods are needed for the characterization of SLN The use of several analytical techniques is a necessity Alternative structures and dynamic phenomena on the molecular level have to be considered Aspects of SLN administration and the in vivo fate of the carrier are discussed

2,569 citations


Journal ArticleDOI
TL;DR: As a novel type of lipid nanoparticles with solid matrix, the nanostructured lipid carriers (NLC) are presented and improvements discussed, for example, increase in loading capacity, physical and chemical long-term stability, triggered release and potentially supersaturated topical formulations.
Abstract: Solid lipid nanoparticles (SLN) were developed at the beginning of the 1990 s as an alternative carrier system to emulsions, liposomes and polymeric nanoparticles. The paper reviews advantages-also potential limitations-of SLN for the use in topical cosmetic and pharmaceutical formulations. Features discussed include stabilisation of incorporated compounds, controlled release, occlusivity, film formation on skin including in vivo effects on the skin. As a novel type of lipid nanoparticles with solid matrix, the nanostructured lipid carriers (NLC) are presented, the structural specialties described and improvements discussed, for example, increase in loading capacity, physical and chemical long-term stability, triggered release and potentially supersaturated topical formulations. For both SLN and NLC, the technologies to produce the final topical formulation are described, especially the production of highly concentrated lipid nanoparticle dispersions >30-80% lipid content. Production issues also include clinical batch production, large scale production and regulatory aspects (e. g. status of excipients or proof of physical stability).

1,616 citations


Journal ArticleDOI
TL;DR: The aim of this article is to review the current understanding of carotenoid formation, to explain the perceived benefits ofcarotenoids in the diet and review the efforts that have been made to increase carotanoids in certain crop plants.
Abstract: Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds and crustacea. Animals are unable to synthesise carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. The aim of this article is to review our current understanding of carotenoid formation, to explain the perceived benefits of carotenoids in the diet and review the efforts that have been made to increase carotenoids in certain crop plants.

1,142 citations


Journal ArticleDOI
TL;DR: This review summarizes relevant in vivo and in vitro methods used to assess the bioavailability of some nutrients, types of microstructural changes imparted by processing and during food ingestion that are relevant in matrix-nutrient interactions, and their effect on theBioavailability of selected nutrients.
Abstract: There is an increased interest in the role that some nutrients may play in preventing or ameliorating the effect of major diseases (for example, some types of cancer, cardiovascular diseases, eye disorders, among others). In this respect, the bioavailability or the proportion of an ingested nutrient that is made available (that is, delivered to the bloodstream) for its intended mode of action is more relevant than the total amount present in the original food. Disruption of the natural matrix or the microstructure created during processing may influence the release, transformation, and subsequent absorption of some nutrients in the digestive tract. Alternatively, extracts of bioactive molecules (for example, nutraceuticals) and beneficial microorganisms may be protected during their transit in the digestive system to the absorption sites by encapsulation in designed matrices. This review summarizes relevant in vivo and in vitro methods used to assess the bioavailability of some nutrients (mostly phytochemicals), types of microstructural changes imparted by processing and during food ingestion that are relevant in matrix-nutrient interactions, and their effect on the bioavailability of selected nutrients.

748 citations