scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer

TL;DR: The diarylthiohydantoins RD162 and MDV3100 are characterized, two compounds optimized from a screen for nonsteroidal antiandrogens that retain activity in the setting of increased androgen receptor expression that appear to be promising candidates for treatment of advanced prostate cancer.
Abstract: Metastatic prostate cancer is treated with drugs that antagonize androgen action, but most patients progress to a more aggressive form of the disease called castration-resistant prostate cancer, driven by elevated expression of the androgen receptor. Here we characterize the diarylthiohydantoins RD162 and MDV3100, two compounds optimized from a screen for nonsteroidal antiandrogens that retain activity in the setting of increased androgen receptor expression. Both compounds bind to the androgen receptor with greater relative affinity than the clinically used antiandrogen bicalutamide, reduce the efficiency of its nuclear translocation, and impair both DNA binding to androgen response elements and recruitment of coactivators. RD162 and MDV3100 are orally available and induce tumor regression in mouse models of castration-resistant human prostate cancer. Of the first 30 patients treated with MDV3100 in a Phase I/II clinical trial, 13 of 30 (43%) showed sustained declines (by >50%) in serum concentrations of prostate-specific antigen, a biomarker of prostate cancer. These compounds thus appear to be promising candidates for treatment of advanced prostate cancer.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Enzalutamide significantly prolonged the survival of men with metastatic castration-resistant prostate cancer after chemotherapy, and was shown with respect to all secondary end points.
Abstract: Background Enzalutamide (formerly called MDV3100) targets multiple steps in the androgen-receptor–signaling pathway, the major driver of prostate-cancer growth. We aimed to evaluate whether enzalutamide prolongs survival in men with castration-resistant prostate cancer after chemotherapy. Methods In our phase 3, double-blind, placebo-controlled trial, we stratified 1199 men with castration-resistant prostate cancer after chemotherapy according to the Eastern Cooperative Oncology Group performance-status score and pain intensity. We randomly assigned them, in a 2:1 ratio, to receive oral enzalutamide at a dose of 160 mg per day (800 patients) or placebo (399 patients). The primary end point was overall survival. Results The study was stopped after a planned interim analysis at the time of 520 deaths. The median overall survival was 18.4 months (95% confidence interval [CI], 17.3 to not yet reached) in the enzalutamide group versus 13.6 months (95% CI, 11.3 to 15.8) in the placebo group (hazard ratio for de...

3,866 citations

Journal ArticleDOI
TL;DR: Analysis of genomic and clinical outcome data from 218 prostate cancer tumors revealed that copy-number alterations robustly define clusters of low- and high-risk disease beyond that achieved by Gleason score.

3,310 citations

Journal ArticleDOI
TL;DR: Enzalutamide significantly decreased the risk of radiographic progression and death and delayed the initiation of chemotherapy in men with metastatic prostate cancer.
Abstract: BACKGROUND: Enzalutamide is an oral androgen-receptor inhibitor that prolongs survival in men with metastatic castration-resistant prostate cancer in whom the disease has progressed after chemotherapy. New treatment options are needed for patients with metastatic prostate cancer who have not received chemotherapy, in whom the disease has progressed despite androgen-deprivation therapy. METHODS: In this double-blind, phase 3 study, we randomly assigned 1717 patients to receive either enzalutamide (at a dose of 160 mg) or placebo once daily. The coprimary end points were radiographic progression-free survival and overall survival. RESULTS: The study was stopped after a planned interim analysis, conducted when 540 deaths had been reported, showed a benefit of the active treatment. The rate of radiographic progression-free survival at 12 months was 65% among patients treated with enzalutamide, as compared with 14% among patients receiving placebo (81% risk reduction; hazard ratio in the enzalutamide group, 0.19; 95% confidence interval [CI], 0.15 to 0.23; P<0.001). A total of 626 patients (72%) in the enzalutamide group, as compared with 532 patients (63%) in the placebo group, were alive at the data-cutoff date (29% reduction in the risk of death; hazard ratio, 0.71; 95% CI, 0.60 to 0.84; P<0.001). The benefit of enzalutamide was shown with respect to all secondary end points, including the time until the initiation of cytotoxic chemotherapy (hazard ratio, 0.35), the time until the first skeletal-related event (hazard ratio, 0.72), a complete or partial soft-tissue response (59% vs. 5%), the time until prostate-specific antigen (PSA) progression (hazard ratio, 0.17), and a rate of decline of at least 50% in PSA (78% vs. 3%) (P<0.001 for all comparisons). Fatigue and hypertension were the most common clinically relevant adverse events associated with enzalutamide treatment. CONCLUSIONS: Enzalutamide significantly decreased the risk of radiographic progression and death and delayed the initiation of chemotherapy in men with metastatic prostate cancer. (Funded by Medivation and Astellas Pharma; PREVAIL ClinicalTrials.gov number, NCT01212991.).

2,426 citations

Journal ArticleDOI
TL;DR: In this article, the androgen-receptor splice variant 7 (AR-V7) was found to be associated with resistance to enzalutamide and abiraterone.
Abstract: Background The androgen-receptor isoform encoded by splice variant 7 lacks the ligand-binding domain, which is the target of enzalutamide and abiraterone, but remains constitutively active as a transcription factor. We hypothesized that detection of androgen-receptor splice variant 7 messenger RNA (AR-V7) in circulating tumor cells from men with advanced prostate cancer would be associated with resistance to enzalutamide and abiraterone. Methods We used a quantitative reverse-transcriptase–polymerase-chain-reaction assay to evaluate AR-V7 in circulating tumor cells from prospectively enrolled patients with metastatic castration-resistant prostate cancer who were initiating treatment with either enzalutamide or abiraterone. We examined associations between AR-V7 status (positive vs. negative) and prostate-specific antigen (PSA) response rates (the primary end point), freedom from PSA progression (PSA progression–free survival), clinical or radiographic progression–free survival, and overall survival. Resul...

2,221 citations

Journal ArticleDOI
TL;DR: In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates.
Abstract: The concept of isosterism between relatively simple chemical entities was originally contemplated by James Moir in 1909, a notion further refined by H. G. Grimm’s hydride displacement law and captured more effectively in the ideas advanced by Irving Langmuir based on experimental observations. Langmuir coined the term “isostere” and, 18 years in advance of its actual isolation and characterization, predicted that the physical properties of the then unknown ketene would resemble those of diazomethane. The emergence of bioisosteres as structurally distinct compounds recognized similarly by biological systems has its origins in a series of studies published byHans Erlenmeyer in the 1930s, who extended earlier work conducted by Karl Landsteiner. Erlenmeyer showed that antibodies were unable to discriminate between phenyl and thienyl rings or O, NH, and CH2 in the context of artificial antigens derived by reacting diazonium ions with proteins, a process that derivatized the ortho position of tyrosine, as summarized in Figure 1 The term “bioisostere” was introduced by Harris Friedman in 1950 who defined it as compounds eliciting a similar biological effect while recognizing that compounds may be isosteric but not necessarily bioisosteric. This notion anticipates that the application of bioisosterism will depend on context, relying much less on physicochemical properties as the underlying principle for biochemical mimicry. Bioisosteres are typically less than exact structural mimetics and are often more alike in biological rather than physical properties. Thus, an effective bioisostere for one biochemical application may not translate to another setting, necessitating the careful selection and tailoring of an isostere for a specific circumstance. Consequently, the design of bioisosteres frequently introduces structural changes that can be beneficial or deleterious depending on the context, with size, shape, electronic distribution, polarizability, dipole, polarity, lipophilicity, and pKa potentially playing key contributing roles in molecular recognition and mimicry. In the contemporary practice of medicinal chemistry, the development and application of bioisosteres have been adopted as a fundamental tactical approach useful to address a number of aspects associated with the design and development of drug candidates. The established utility of bioisosteres is broad in nature, extending to improving potency, enhancing selectivity, altering physical properties, reducing or redirecting metabolism, eliminating or modifying toxicophores, and acquiring novel intellectual property. In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates. Interesting concepts that may have been poorly effective in the context examined are captured, since the ideas may have merit in alternative circumstances. A comprehensive cataloging of bioisosteres is beyond the scope of what will be provided, although a synopsis of relevant isosteres of a particular functionality is summarized in a succinct fashion in several sections. Isosterism has also found productive application in the design and optimization of organocatalysts, and there are several examples in which functional mimicry established initially in a medicinal chemistry setting has been adopted by this community.

2,049 citations

References
More filters
Journal ArticleDOI
23 Dec 1998-Cell
TL;DR: Crystal structures of the human estrogen receptor alpha (hER alpha) ligand-binding domain (LBD) and the OHT-LBD complex reveal the two distinct mechanisms by which structural features of OHT promote this "autoinhibitory" helix 12 conformation.

2,581 citations

Journal ArticleDOI
TL;DR: Using microarray-based profiling of isogenic prostate cancer xenograft models, it is found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy.
Abstract: Using microarray-based profiling of isogenic prostate cancer xenograft models, we found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy. This increase in androgen receptor mRNA and protein was both necessary and sufficient to convert prostate cancer growth from a hormone-sensitive to a hormone-refractory stage, and was dependent on a functional ligand-binding domain. Androgen receptor antagonists showed agonistic activity in cells with increased androgen receptor levels; this antagonist-agonist conversion was associated with alterations in the recruitment of coactivators and corepressors to the promoters of androgen receptor target genes. Increased levels of androgen receptor confer resistance to antiandrogens by amplifying signal output from low levels of residual ligand, and by altering the normal response to antagonists. These findings provide insight toward the design of new antiandrogens.

2,320 citations

Journal ArticleDOI
TL;DR: Strategies that are focused on the androgen receptor either directly or indirectly, as single agents or in combination, that are in clinical development that are discussed are discussed.
Abstract: Prostate cancers that are progressing on medical and surgical therapies designed to ablate the action of androgens continue to express androgen receptor (AR) and to depend on signaling through the receptor for growth. A more clinically relevant classification of castration-resistant disease focuses on the mechanisms of receptor activation, which include (1) changes in the level of ligand(s) in tumor tissue; (2) increased levels of the protein due to gene amplification or altered mRNA expression; (3) activating mutations in the receptor that affect structure and function; (4) changes in coregulatory molecules including coactivators and corepressors; and (5) factors that lead to activation of the receptor independent of the level of ligand or receptor allowing kinase cross talk. From an AR perspective, the term "hormone refractory" is inappropriate. On the basis of this schema, we discuss strategies that are focused on the AR either directly or indirectly, as single agents or in combination, that are in clinical development.

1,022 citations

Journal ArticleDOI
TL;DR: Understanding the changes in AR signaling in the evolution of androgen‐independent prostate cancer will be key to the development of more effective hormone therapy.
Abstract: Despite earlier detection and recent advances in surgery and radiation, prostate cancer is second only to lung cancer in male cancer deaths in the United States. Hormone therapy in the form of medical or surgical castration remains the mainstay of systemic treatment in prostate cancer. Over the last 15 years with the clinical use of prostate specific antigen (PSA), there has been a shift to using hormone therapy earlier in the disease course and for longer duration. Despite initial favorable response to hormone therapy, over a period of time these tumors will develop androgen-independence that results in death. The androgen receptor (AR) is central to the initiation and growth of prostate cancer and to its response to hormone therapy. Analyses have shown that AR continues to be expressed in androgen-independent tumors and AR signaling remains intact as demonstrated by the expression of the AR regulated gene, PSA. Androgen-independent prostate cancers have demonstrated a variety of AR alterations that are either not found in hormone naive tumors or found at lower frequency. These changes include AR amplification, AR point mutation, and changes in expression of AR co-regulatory proteins. These AR changes result in a "super AR" that can respond to lower concentrations of androgens or to a wider variety of agonistic ligands. There is also mounting evidence that AR can be activated in a ligand independent fashion by compounds such as growth factors or cytokines working independently or in combination. These growth factors working through receptor tyrosine kinase pathways may promote AR activation and growth in low androgen environments. The clinical significance of these AR alterations in the development and progression of androgen-independent prostate cancer remains to be determined. Understanding the changes in AR signaling in the evolution of androgen-independent prostate cancer will be key to the development of more effective hormone therapy.

405 citations

Journal ArticleDOI
TL;DR: The three-dimensional structure demonstrates that the B ring of R-bicalutamide in the W741L mutant is accommodated at the location of the indole ring of Trp-741 in the WT AR bound to dihydrotestosterone.
Abstract: Carcinoma of the prostate is the most commonly diagnosed cancer in men. The current pharmacological treatment of choice for progressive androgen-dependent prostate cancer is the nonsteroidal antiandrogen, bicalutamide, either as monotherapy or with adjuvant castration or luteinizing hormone-releasing hormone superagonists to block the synthesis of endogenous testosterone. To date, no nonsteroidal or antagonist-bound androgen receptor (AR) structure is available. We solved the x-ray crystal structure of the mutant W741L AR ligand-binding domain bound to R-bicalutamide at 1.8-A resolution. This mutation confers agonist activity to bicalutamide and is likely involved in bicalutamide withdrawal syndrome. The three-dimensional structure demonstrates that the B ring of R-bicalutamide in the W741L mutant is accommodated at the location of the indole ring of Trp-741 in the WT AR bound to dihydrotestosterone. Knowledge of the binding mechanism for R-bicalutamide will provide molecular rationale for the development of new antiandrogens and selective AR modulators.

393 citations

Related Papers (5)