scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies

Yuantao Wei1, Yuchuan Shi1, Ye Chen1, Chunhui Xiao1, Shujiang Ding1 
02 Mar 2021-Journal of Materials Chemistry (The Royal Society of Chemistry)-Vol. 9, Iss: 8, pp 4415-4453
TL;DR: In this article, the authors provide a guiding and comprehensive summary of the basic understanding and manufacturing ideas of the solid electrolyte for Zn-air and Al-air batteries, as well as challenges and prospects for the future development of alkaline solid electrolytes.
Abstract: Aqueous-based Zn–air and Al–air batteries are considered to be promising post-lithium energy storage technologies owing to their safety, environmental friendliness, affordability, and high energy density. Nevertheless, traditional liquid Zn–air and Al–air batteries have problems such as volatilization and leakage, as well as the realization of miniaturized, portable, and wearable electronic devices. The practice of optimizing the battery structure by replacing the flowing electrolyte with a solid type has emerged and made significant progress in the past ten years. Herein, this review provides a guiding and comprehensive summary of the basic understanding and manufacturing ideas of the solid electrolyte for Zn–air and Al–air batteries. First, two types of alkaline solid electrolytes are distinguished, including alkaline anion exchange membranes (AAEMs) and gel polymer electrolytes (GPEs). Then, three sorts of major framework materials (i.e., artificial organic polymer, biomass materials, and inorganic materials) are reviewed and discussed. Most importantly, the latest research progress and improvement strategies to enhance the electrolyte membrane performances involving conductivity, mechanical properties, and electrochemical stability are also highlighted. Finally, challenges and prospects for the future development of alkaline solid electrolytes are emphasized.
Citations
More filters
01 Jun 2017
TL;DR: Wang et al. as mentioned in this paper won the Third Prize ( Category: Innovation) in the "Challenge Cup" National Competition -Hong Kong Regional Final, Hong Kong University Student Innovation and Entrepreneurship Competition 2017 organized by the Hong Kong New Generation Cultural Association.
Abstract: Won the Third Prize (Category: Innovation ) in the "Challenge Cup" National Competition – Hong Kong Regional Final, Hong Kong University Student Innovation and Entrepreneurship Competition 2017 organized by the Hong Kong New Generation Cultural Association.

80 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental reactions of Zn anodes in both alkaline and neutral electrolytes were elucidated in detail, including surface passivation, dendritic growth, hydrogen evolution, and shape change in the Zn stripping/plating procedure.

60 citations

Journal ArticleDOI
TL;DR: In this article , the fundamental reactions of Zn anodes in both alkaline and neutral electrolytes were elucidated in detail, including surface passivation, dendritic growth, hydrogen evolution, and shape change in the Zn stripping/plating procedure.

49 citations

Journal ArticleDOI
TL;DR: In this article, a membrane-free acid-alkaline flexible electrolyte based on thermo-reversible Pluronic® F127 hydrogels was proposed for wearable electronics, where the acid and alkaline can be decoupled but integrated simultaneously in one hydrogel.

26 citations

References
More filters
Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Abstract: The chemistry of graphene oxide is discussed in this critical review Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references)

10,126 citations

Journal ArticleDOI
TL;DR: Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices and are needed to service the wide energy requirements of various devices and systems.
Abstract: Electrochemical energy conversion devices are pervasive in our daily lives. Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices. They are all based on the fundamentals of electrochemical thermodynamics and kinetics. All three are needed to service the wide energy requirements of various devices and systems. Neither batteries, fuel cells nor electrochemical capacitors, by themselves, can serve all applications.

6,230 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications.
Abstract: Solid-state electrolytes are attracting increasing interest for electrochemical energy storage technologies. In this Review, we provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications. We focus on recent advances in various classes of battery chemistries and systems that are enabled by solid electrolytes, including all-solid-state lithium-ion batteries and emerging solid-electrolyte lithium batteries that feature cathodes with liquid or gaseous active materials (for example, lithium–air, lithium–sulfur and lithium–bromine systems). A low-cost, safe, aqueous electrochemical energy storage concept with a ‘mediator-ion’ solid electrolyte is also discussed. Advanced battery systems based on solid electrolytes would revitalize the rechargeable battery field because of their safety, excellent stability, long cycle lives and low cost. However, great effort will be needed to implement solid-electrolyte batteries as viable energy storage systems. In this context, we discuss the main issues that must be addressed, such as achieving acceptable ionic conductivity, electrochemical stability and mechanical properties of the solid electrolytes, as well as a compatible electrolyte/electrode interface. This Review details recent advances in battery chemistries and systems enabled by solid electrolytes, including all-solid-state lithium-ion, lithium–air, lithium–sulfur and lithium–bromine batteries, as well as an aqueous battery concept with a mediator-ion solid electrolyte.

2,749 citations

Journal ArticleDOI
TL;DR: The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes, and the design and optimization of air-electrode structure are outlined.
Abstract: Because of the remarkably high theoretical energy output, metal–air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal–air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal–air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic–organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal–air batteries (219 references).

2,211 citations