scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Developmental Potentialities of Clonal In Vitro Cultures of Mouse Testicular Teratoma

01 May 1970-Journal of the National Cancer Institute (Oxford University Press)-Vol. 44, Iss: 5, pp 1015-1036
About: This article is published in Journal of the National Cancer Institute.The article was published on 1970-05-01. It has received 219 citations till now. The article focuses on the topics: Mouse Testicular Teratoma & Teratoma.
Citations
More filters
Journal ArticleDOI
TL;DR: This work reviews the history of murine and human ES cell Lines, including practical and ethical aspects of ES cell isolation from pre‐implantation embryos, maintenance of undifferentiated ES cell lines in the cell culture environment, and differentiation of ES cells in vitro and in vivo into mature somatic cell types.
Abstract: Embryonic stem cells have huge potential in the field of tissue engineering and regenerative medicine as they hold the capacity to produce every type of cell and tissue in the body. In theory, the treatment of human disease could be revolutionized by the ability to generate any cell, tissue, or even organ, 'on demand' in the laboratory. This work reviews the history of murine and human ES cell lines, including practical and ethical aspects of ES cell isolation from pre-implantation embryos, maintenance of undifferentiated ES cell lines in the cell culture environment, and differentiation of ES cells in vitro and in vivo into mature somatic cell types. Finally, we discuss advances towards the clinical application of ES cell technology, and some of the obstacles which must be overcome before large scale clinical trials can be considered.

1,148 citations

Journal ArticleDOI
01 Nov 1975-Cell
TL;DR: From a transplantable mouse teratoma it has been possible to derive an established keratinizing cell line (XB) which grows well in cultures containing lethally irradiated 3T3 fibroblasts at the correct density.

1,083 citations

Journal ArticleDOI
TL;DR: This review summarizes the progress that has been made in the iPSC field over the last 4 years, with an emphasis on understanding the mechanisms of cellular reprogramming and its potential applications in cell therapy.
Abstract: The generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of a few embryonic transcription factors. This discovery has raised fundamental questions about the mechanisms by which transcription factors influence the epigenetic conformation and differentiation potential of cells during reprogramming and normal development. In addition, iPSC technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. In this review, we summarize the progress that has been made in the iPSC field over the last 4 years, with an emphasis on understanding the mechanisms of cellular reprogramming and its potential applications in cell therapy.

799 citations


Cites background from "Developmental Potentialities of Clo..."

  • ...These cell lines were called embryonal carcinoma cells (ECCs) (Stevens and Little 1954; Kleinsmith and Pierce 1964) and could be clonally expanded in culture while retaining pluripotency (Finch and Ephrussi 1967; Kahan and Ephrussi 1970)....

    [...]

Journal ArticleDOI
TL;DR: This review focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects forhuman ES cells in tissue regeneration and transplantation.
Abstract: Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.

789 citations

Journal ArticleDOI
TL;DR: No evidence for retinoic acid toxicity is found, suggesting that the effect of the drug was to induce the development of neurons and glia rather than to select against cells differentiating along other developmental pathways.
Abstract: Murine embryonal carcinoma cells can differentiate into a varied spectrum of cell types. We observed the abundant and precocious development of neuronlike cells when embryonal carcinoma cells of various pluripotent lines were aggregated and cultured in the presence of nontoxic concentrations of retinoic acid. Neuronlike cells were also formed in retinoic acid-treated cultures of the embryonal carcinoma line, P19, which does not differentiate into neurons in the absence of the drug. The neuronal nature of these cells was confirmed by their staining with antiserum directed against neurofilament protein in indirect immunofluorescence experiments. Retinoic acid-treated cultures also contained elevated acetylcholinesterase activity. Glial cells, identified by immunofluorescence analysis of their intermediate filaments, and a population of fibroblastlike cells were also present in retinoic acid-treated cultures of P19 cells. We did not observe embryonal carcinoma, muscle, or epithelial cells in these cultures. Neurons and glial cells appeared in cultures exposed to retinoic acid for as little as 48 h. We found no evidence for retinoic acid toxicity, suggesting that the effect of the drug was to induce the development of neurons and glia rather than to select against cells differentiating along other developmental pathways.

785 citations