scispace - formally typeset
Open AccessJournal ArticleDOI

Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2.

Thorsten Mauritsen, +77 more
- 01 Apr 2019 - 
- Vol. 11, Iss: 4, pp 998-1038
Reads0
Chats0
TLDR
The model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two‐layer model.
Abstract
A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI‐ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low‐level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two‐layer model.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Global Carbon Budget 2020

Pierre Friedlingstein, +95 more
TL;DR: In this paper, the authors describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Journal ArticleDOI

Global Carbon Budget 2018

Corinne Le Quéré, +84 more
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Journal ArticleDOI

Global Carbon Budget 2019

Pierre Friedlingstein, +88 more
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land use change, and show that the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere is a measure of imperfect data and understanding of the contemporary carbon cycle.
Journal ArticleDOI

Presentation and evaluation of the IPSL‐CM6A‐LR climate model

Olivier Boucher, +79 more
TL;DR: The authors presented the global climate model IPSL-CM6A-LR developed at the Institut Pierre-Simon Laplace (IPSL) to study natural climate variability and climate response to natural and anthropogenic forcings as part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6).
Journal ArticleDOI

Global Carbon Budget 2021

Pierre Friedlingstein, +63 more
TL;DR: Friedlingstein et al. as mentioned in this paper presented and synthesized datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including fossil CO2 emissions, land use and land-use change data and bookkeeping models.
References
More filters
Journal ArticleDOI

Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave

TL;DR: A rapid and accurate radiative transfer model (RRTM) for climate applications has been developed and the results extensively evaluated as discussed by the authors, which is performed using the correlated-k method: the k distributions are attained directly from the LBLRTM line-byline model, which connects the absorption coefficients used by RRTM to high-resolution radiance validations done with observations.
Journal ArticleDOI

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization

TL;DR: In this article, the authors present the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21-CMIP6-Endorsed MIPs.
Book ChapterDOI

Anthropogenic and Natural Radiative Forcing

TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Journal ArticleDOI

Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models

TL;DR: In this article, the AER line-by-line (LBL) models were compared with the RTMIP line-By-line results in the longwave and shortwave for clear sky scenarios previously examined by the radiative transfer model intercomparison project.
Related Papers (5)