scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Device simulations of ion-sensitive FETs with arbitrary surface chemical reactions

TL;DR: In this article, the authors exploit the general-purpose solver COMSOL, equipped with electrolyte and semiconductor physics modules, to implement a versatile model of potentiometric chemical sensors including arbitrarily complex surface reactions at the oxide/electrolyte interface with examples on 2D device-level simulations of an ISFET.
Abstract: In this work, we exploit the general-purpose solver COMSOL, equipped with electrolyte and semiconductor physics modules, to implement a versatile model of potentiometric chemical sensors including arbitrarily complex surface reactions at the oxide/electrolyte interface with examples on 2D devicelevel simulations of an ISFET. Firstly, Multiphysics simulations of V TH sensitivity to pH sensing are compared with analyses based on semiconductor TCAD. Then, more complex Na+ sensing experiments are examined and numerical simulations are compared against 1D electrochemical models.
References
More filters
Journal ArticleDOI
TL;DR: In this article, the absorption index at the wave length of the band maximum was found to be proportional to the total concentration of metal at shorter wave lengths, however, deviations were observed, the absorption increasing more rapidly with concentration than Beers' law would demand.
Abstract: solutions investigated, the absorption index diminishing approximately 1% for a rise in temperature of one degree. 6. In liquid ammonia rough measurements of concentration showed the absorption index to be proportional to the total concentration of metal. 7. In methylamine the absorption index, at the wave length of the band maximum is also proportional to the total concentration of metal. At shorter wave lengths, however, deviations were observed, the absorption increasing more rapidly with concentration than Beers’ law would demand. The ratio of the absorption index a t 650pp to that a t 53opp increases not only with increasing concentration of the metal but also with increasing concentration of the reaction product of the metal with methylamine, and probably also with increasing temperature. 8. These observations can be accounted for by the following hypotheses: The color in all cases is due to electrons combined with the solvent. In ammonia the dissociation of the metal into electrons is nearly complete, and the concentration of electrons uncombine4 with solvent is negligible compared with that of the solvated electrons. In other words, the solvation of the electrons is nearly complete. In methylamine, on the other hand, the concentration of un-ionized metal is no longer negligible and is responsible for the increased absorption a t the shorter wave lengths. The solvation of the electrons in methylamine is incomplete and diminishes as the temperature is increased.

18,573 citations

Journal ArticleDOI
TL;DR: In this article, a site-binding model of the oxide/aqueous electrolyte interface is introduced, in which the adsorbed counter ions form interfacial ion pairs with discrete charged surface groups.
Abstract: A site-binding model of the oxide/aqueous electrolyte interface is introduced, in which it is proposed that the adsorbed counter ions form interfacial ion pairs with discrete charged surface groups. This model is used to calculate theoretical surface charge densities of the potential-determining (H+/OH–) ions and the potential at the Outer Helmholtz Plane, which are shown to be consistent with experimental data for oxides. An explanation is provided for the difference between silica and most other oxides in terms of the dissociation constants of the surface hydroxyl groups.

1,231 citations

Journal ArticleDOI
TL;DR: In this article, a new general theory to describe the electrostatic potential at the metal oxide electrolyte solution interface is presented, which describes the variations of the electric potential as a function of the differential double layer capacitance and the intrinsic buffer capacity.

412 citations

Journal ArticleDOI
Matti Kaisti1
TL;DR: The fundamental detection principle governing every potentiometric sensor is introduced, and different state-of-the-art FET sensor structures are reviewed, followed by an analysis of electrolyte interfaces and their influence on sensor operation.

384 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the state-of-the-art in terms of device and early readout circuity for ion-sensitive field effect transistors (ISFETs).
Abstract: Over the past decade, ion-sensitive field-effect transistors (ISFETs) have played a major role in enabling the fabrication of fully integrated CMOS-based chemical sensing systems. This has allowed several new application areas, with the most promising being the fields of ion imaging and full genome sequencing. This paper reviews the new trends in front-end topologies toward the design of ISFET sensing arrays in CMOS for these new applications. More than a decade after the review of the ISFET by Bergveld which summarized the state of the art in terms of device and early readout circuity, we describe the evolution in terms of device macromodel and identify the main sensor challenges for current designers. We analyze the techniques that have been reported for both ISFET instrumentation and compensation, and conclude that topologies are focusing on device adaptation for offset and drift cancellation, as opposed to system compensation which are often not as robust. Guidelines are provided to build a tailored CMOS ISFET array, emphasizing that the needs in terms of applications are the keys to selecting the right pixel architecture. Over the next few years, the race for the largest and densest array is likely to be put on hold to allow the research to focus on new pixel topologies, ultimately leading to the development of reliable and scalable arrays. A wide range of new applications are expected to motivate this paper for at least another decade.

171 citations