scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Dielectric resonator antenna

22 Apr 2015-pp 1-3
TL;DR: In this paper, the authors used a dielectric resonator as a radiating element of a antenna with the aim of reducing the dimensions of such antennas compared to classical microstrip antennas.
Abstract: This article is focused on using a dielectric resonator as a radiating element of a antenna with the aim to reduce dimensions of such antennas compared to classical microstrip antennas. Such antenna was build and its parameters tested in frequency band of 2.9 to 3.1 GHz.
Citations
More filters
Journal ArticleDOI

26 citations


Cites background from "Dielectric resonator antenna"

  • ...Cylindrical shaped DRA has the capability to support three different mode field patterns (TEmnp, TMmnp, HEmnp) which is helpful in achieving the diversified radiation patterns.(3) In the recent era of wireless communication, antenna engineers are widely focused on dual-band/multiband radiators along with circular polarization characteristics....

    [...]

Journal ArticleDOI

25 citations


Cites background from "Dielectric resonator antenna"

  • ...Out of these elementary shapes, cylindrical DRA is highly used because of its extensive commercial obtainability and diversified radiation patterns.(2) In the current age of cellular communication, the research is widely focused on dual polarized DRA because these radiators are insensitive to the orientation and multipath interferences between transmitter and receiver antennas....

    [...]

Journal ArticleDOI
TL;DR: For the first time, an annular slot is used to excite the fundamental TM $_{01 \delta }$ mode of a cylindrical dielectric resonator antenna (DRA).
Abstract: For the first time, an annular slot is used to excite the fundamental TM $_{01 \delta }$ mode of a cylindrical dielectric resonator antenna (DRA). The annular slot has eight pairs of meander lines that make the $E$ -field of the slot nearly uniform. The meander lines can introduce an inductance to the antenna and thus, lower the resonant frequency or equivalently reduce the antenna size. To verify the idea, a prototype operating in the fundamental TM $_{01 \delta }$ mode was designed, fabricated, and measured for 2.4 GHz WLAN applications (2.40–2.48 GHz). The ${S}$ -parameters, radiation pattern, realized gain, and total efficiency are simulated and measured, and good agreement between the simulations and measurements is obtained. As compared with a conventional probe-fed TM $_{01\delta }$ -mode cylindrical DRA, our antenna has a size reduction of 43% while providing a measured 10 dB impedance bandwidth of 18.0%.

23 citations


Cites background from "Dielectric resonator antenna"

  • ...[1], [2], it has attracted tremendous research interests for its compact size, high efficiency, and different radiation patterns [3]–[6]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a unilateral rectangular dielectric resonator antenna (DRA) was designed using two DR modes, namely, the fundamental $\boldsymbol{TE}_{\boldsmbol{\delta }11}^{\boldsymbelsmbol{x}}$ mode and higher-order $\bold symbols{TE]_{2\bold symbolsmbol{delta 1}1}
Abstract: For the first time, a unilateral rectangular dielectric resonator (DR) antenna (DRA) is designed using two DR modes, namely the fundamental $\boldsymbol{TE}_{\boldsymbol{\delta }11}^{\boldsymbol{x}}$ mode and higher-order $\boldsymbol{TE}_{2\boldsymbol{\delta }1}^{\boldsymbol{y}}$ mode. The former and latter provide the broadside and quasi-omnidirectional radiation patterns, respectively. By combining the radiation fields of the two resonant modes, unilateral radiation with wide 3 dB beamwidths can be obtained. For demonstration, a unilateral rectangular DRA was designed in 2.4 GHz WLAN band. Across the WLAN band, the DRA has a measured front-to-back ratio (FTBR) of higher than 15 dB. It is found that the measured maximum FTBR of the DRA is 36.6 dB, whereas the measured 3 dB beamwidths of the two principal radiation planes are both wider than 174°.

18 citations


Cites methods from "Dielectric resonator antenna"

  • ...This feeding method is the same as that of a traditional probe-fed DRA design [2], [3], but here the unilateral radiation...

    [...]

  • ...32 GHz) was studied first and it was found that the field distributions resemble those of the TE δ11 mode [2]....

    [...]

  • ...By using a different DRA mode, a broadside or omnidirectional radiation pattern can be obtained [2], [3]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a wideband circularly polarized rectangular dielectric resonator antenna (RDRA) coupled through orthogonal slots and excited with a new microstrip circular ring has been investigated.
Abstract: In this article, a wideband circularly polarized rectangular dielectric resonator antenna (RDRA) coupled through orthogonal slots and excited with a new microstrip circular ring has been investigated. Circular polarization has been achieved by using plus shaped (+) slot on the ground plane and excited through a new microstrip circular ring feed. TE11δ mode has been excited in the RDRA which has been confirmed through the distribution of E-field and dielectric waveguide model (DWM) method of RDRA. Circularly polarized (CP) RDRA offering measured −10 dB input impedance bandwidth of 20.79% (centered at 3.27 GHz) and 3 dB axial ratio bandwidth in broadside direction of 12.09% (centered at 3.39 GHz), respectively. From the CP radiation pattern, proposed design confirms that right-handed CP (RHCP) in broadside direction. The difference between RHCP field and left-handed CP (LHCP) field are above −26 dB in operational band. In addition, the proposed CP antenna offers stable gain and radiation efficiency in working bands and it is suitable for IEEE 802.16e/d Wi-MAX (3.3-3.7 GHz) band.

16 citations


Cites background from "Dielectric resonator antenna"

  • ...Circular polarization has been achieved by using plus shaped (1) slot on the ground plane and excited through a new microstrip circular ring feed....

    [...]

  • ...C, Plus (1)-shaped slot on the ground plane....

    [...]

  • ...C,Microstrip circular ring feed with plus (1) shaped slot...

    [...]

  • ...These two slots make plus (1)-shaped and form orthogonal modes in RDRA for generation of circular polarization....

    [...]

  • ...The proposed antenna coupled through an orthogonal slot, that is, plus-shaped (1) slot and excited with a new microstrip circular ring....

    [...]

References
More filters
Book ChapterDOI
15 Apr 2005
TL;DR: Linearly and circularly polarized conformal strip-fed dielectric resonator antennas (DRAs) are studied in this article, where a parasitic patch is used to excite a nearly degenerate mode.
Abstract: Linearly and circularly polarized conformal strip-fed dielectric resonator antennas (DRAs) are studied in this article. In the latter case, a parasitic patch is used to excite a nearly degenerate mode. The hemispherical DRA, excited in its fundamental broadside TE111 mode, is used for the demonstration. In the analysis, the mode-matching method is used to obtain the Green's functions, whereas the method of moments is used to solve for the unknown strip currents. In order to solve the singularity problem of the Green's functions, a recurrence technique is used to evaluate the impedance integrals. This greatly increases the numerical efficiency. Measurements were carried out to verify the calculations, with good results. Keywords: circularly polarized antenna; dielectric antennas; mode-matching methods; moment methods; parasitic antennas; resonance

898 citations

Dissertation
01 Jan 2010
TL;DR: In this paper, the authors present a history of dielectric resonator antennas and their application in various applications, including antenna design, antenna selection, and application in antenna applications.
Abstract: ........................................................................................................................ iv ACKNOWLEDGEMENT ........................................................................................................ v LIST OF FIGURES .............................................................................................................. viii LIST OF SYMBOLS .............................................................................................................. xv CHAPTER 1 ......................................................................................................................................................... 1 INTROUDUCTION .............................................................................................................................................. 1 CHAPTER 2 ......................................................................................................................................................... 3 OVERVIEW ......................................................................................................................................................... 3 2.1 History of Dielectric Resonator Antennas ................................................................................................... 3 2.2 Characteristics of the Dielectric Resonator Antennas ................................................................................. 4 2.3 Materials for dielectric resonators .............................................................................................................. 5 2.3.1 Losses and quality factor ................................................................................................................................... 6 2.3.2 Barium‐titanates ................................................................................................................................................ 7 2.3.3 Zirconium – titanates ......................................................................................................................................... 7 2.3.4 Pseudo‐tungsten bronze‐type ........................................................................................................................... 7 2.3.5 Low Temperature Cofired Ceramics .................................................................................................................. 7 2.3.6 Alumina .............................................................................................................................................................. 8 2.3.7 Titania ................................................................................................................................................................ 8 2.3.8 Cerium Oxide ..................................................................................................................................................... 8 2.3.9 Silicates .............................................................................................................................................................. 9 2.3.10 Bismuth based low‐firing ceramics ..................................................................................................................... 9 2.3.11 Antenna applications .......................................................................................................................................... 9 2.4 Types of modes ......................................................................................................................................... 11 2.5 Shapes of Dielectric Resonator Antennas .................................................................................................. 14 2.5.1 The Cylindrical Dielectric Resonator ................................................................................................................. 15 2.5.1.1 Field Distribution .................................................................................................................................... 15 2.5.1.2 Resonant Frequencies ...................................................................................................................................... 19 2.5.2 The Hemispherical Dielectric Resonator ........................................................................................................... 25 2.5.3 The Rectangular Parallel Epiped Dielectric Resonator ...................................................................................... 27 2.5.4 Other Shapes for Dielectric Resonator Antennas ............................................................................................. 28 2.5.4.1 Split‐Cylinder Dielectric Resonator ......................................................................................................... 28 2.5.4.2 Cylindrical‐Ring Dielectric Resonator ..................................................................................................... 29 2.5.4.3 Cross‐Shaped Dielectric Resonator ........................................................................................................ 29 2.5.4.4 Perforated Dielectric Resonator ............................................................................................................. 29 2.5.4.5 Cone‐Shaped Dielectric Resonator ......................................................................................................... 30 2.5.4.6 Stepped‐Stair Structured Dielectric Resonator ...................................................................................... 31 2.6 Wideband Techniques ............................................................................................................................... 31 2.7 Excitation Techniques ................................................................................................................................ 32 2.8 Polarization ............................................................................................................................................... 34 2.9 Input Impedance ....................................................................................................................................... 35 CHAPTER 3 ....................................................................................................................................................... 40 METHODOLOGY ............................................................................................................................................. 40 vii 3.1 Decision of Shape ...................................................................................................................................... 40 3.2 Omni‐directional Dielectric Resonator Antenna Design ............................................................................ 42 3.2.1 Excitation techniques ....................................................................................................................................... 42 3.2.2 Choosing parameters ........................................................................................................................................ 44 3.2.3 Matching ........................................................................................................................................................... 55 3.2.3.1 Coaxial Cable Coupling ........................................................................................................................... 56 3.2.3.2 Microstrip Feeding ................................................................................................................................. 57 3.2.4 Outcome ........................................................................................................................................................... 60 3.3 Broadside Array Antenna Design .............................................................................................................. 61 3.3.1 Excitation Technique ........................................................................................................................................ 62 3.3.2 Choosing Parameters ........................................................................................................................................ 63 3.3.3 Matching ........................................................................................................................................................... 64 3.3.4 Outcome ........................................................................................................................................................... 65 3.4 Fabrication ................................................................................................................................................ 66 3.5 Measurement Methodology ..................................................................................................................... 68 3.5.1 Measurements of Scattering Parameters ......................................................................................................... 68 3.5.2 Measurements of Radiation Pattern ................................................................................................................ 69 3.5.3 Measurement of Efficiency ............................................................................................................................... 71 CHAPTER 4 ....................................................................................................................................................... 72 RESULTS ........................................................................................................................................................... 72 4.1 Scattering Parameters .............................................................................................................................. 72 4.1.1 Omni‐directional Antenna ..

165 citations

Dissertation
01 Jan 1999
TL;DR: In this paper, Beng-Teck Lim submitted a partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.
Abstract: by Beng-Teck Lim Submitted to the Department of Electrical Engineering in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1999 (Beng-Teck Lim, 1999. All rights reserved. The author hereby grants to M.I.T. permission to reproduce and distribute publicly paper and electronic copies of he thesis and to grant others the right to do so. A

22 citations


"Dielectric resonator antenna" refers background in this paper

  • ...where S is the desired VSWR at the input port of the DRA and Qrad is the quality factor of the radiation [2]....

    [...]