scispace - formally typeset
Open AccessJournal ArticleDOI

Different Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases.

Reads0
Chats0
TLDR
In this article, the authors performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations.
Abstract
SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; eight patients with Mild COVID-19 disease and eight cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Correlates of protection against SARS‐CoV‐2 infection and COVID‐19 disease

TL;DR: Antibodies against epitopes in S1 give the most accurate CoP against infection by the SARS‐CoV‐2 coronavirus, and the role of cellular responses can be discerned with respect to CD4+ T cells and their augmentation of antibodies, and with regard to control of viral replication.
References
More filters
Journal ArticleDOI

Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.

TL;DR: Wang et al. as discussed by the authors used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death, including older age, high SOFA score and d-dimer greater than 1 μg/mL.
Journal ArticleDOI

Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

TL;DR: Characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia, and further investigation is needed to explore the applicability of the Mu LBSTA scores in predicting the risk of mortality in 2019-nCoV infection.
Journal ArticleDOI

COVID-19: consider cytokine storm syndromes and immunosuppression

TL;DR: Re-analysis of data from a phase 3 randomised controlled trial of IL-1 blockade (anakinra) in sepsis, showed significant survival benefit in patients with hyperinflammation, without increased adverse events.
Journal ArticleDOI

Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China.

TL;DR: Investigation of NLR and lymphocyte subsets is helpful in the early screening of critical illness, diagnosis and treatment of COVID-19 and shows the novel coronavirus might mainly act on lymphocytes, especially T lymphocytes.
Related Papers (5)