scispace - formally typeset
Journal ArticleDOI: 10.1016/J.IJBIOMAC.2021.02.198

Different strategies for the lipase immobilization on the chitosan based supports and their applications.

02 Mar 2021-International Journal of Biological Macromolecules (Elsevier)-Vol. 179, pp 170-195
Abstract: Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.

... read more

Topics: Lipase (57%), Immobilized enzyme (52%)
Citations
  More

11 results found


Journal ArticleDOI: 10.1016/J.IJBIOMAC.2021.04.004
Abstract: Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.

... read more

16 Citations


Journal ArticleDOI: 10.1016/J.APCATA.2021.118217
Abstract: We present a method for lipase immobilization via fluidized bed technology. The enzyme drying/immobilization solution consisted of phosphate buffer (50 mM pH 7.0) containing the lipase (5.0 mgprotein/gchitosan), 200 mM of NaCl and PEG-1500 (1.5 % m/v). The lipase immobilized on glutaraldehyde-activated enhanced 46.5 % of initial lipase activity. The optimum pH for the free lipase was slightly acid (pH 6.5), whereas the optimum pH for the immobilized systems shifted to the alkaline region (pH 8.0). As for the optimum temperature, it went from 45 °C for the free lipase to 50 °C for the immobilized systems. The immobilized systems had half-life of 5.81 h and stabilization factor of 10.75 at 80 °C. The kinetic data showed that the lipase immobilized on chitosan beads activated with glutaraldehyde was catalytically more efficient (KM: 0.015, Vmax: 170.4 μmol/min/mg, and Vmax/KM: 11,360) than the free lipase (KM: 0.035, Vmax: 120.3 μmol/min/mg, and Vmax/KM: 3437); displayed low moisture content and water activity (moisture: 3.84 % and AW: 0.10); and retained 85.5 % of its initial activity (vs 16.5 % retained activity for the free lipase) after storage for six months. After ten reuse cycles, said immobilized system retained 75.2 % of its initial activity. We employed this system as biocatalyst to esterify butyric acid with butanol. We developed a centered faced central composite design 22 and a mathematical model to describe how the ester content behaved as a function of temperature and amount of biocatalyst, as independent variables. Under optimized conditions (temperature of 45 °C and biocatalyst mass of 0.5 g), 18 g of butyl butyrate/L was attained within 6 h, which corresponded to an esterification yield of 98.96 %.

... read more

Topics: Lipase (63%), Butyl butyrate (54%)

3 Citations


Open accessJournal ArticleDOI: 10.3390/CATAL11101211
09 Oct 2021-Catalysts
Abstract: Enzymes are the highly efficient biocatalyst in modern biotechnological industries. Due to the fragile property exposed to the external stimulus, the application of enzymes is highly limited. The immobilized enzyme by polymer has become a research hotspot to empower enzymes with more extraordinary properties and broader usage. Compared with free enzyme, polymer immobilized enzymes improve thermal and operational stability in harsh environments, such as extreme pH, temperature and concentration. Furthermore, good reusability is also highly expected. The first part of this study reviews the three primary immobilization methods: physical adsorption, covalent binding and entrapment, with their advantages and drawbacks. The second part of this paper includes some polymer applications and their derivatives in the immobilization of enzymes.

... read more

Topics: Immobilized enzyme (60%)

1 Citations


Journal ArticleDOI: 10.1016/J.IJBIOMAC.2021.08.173
Abstract: This work aimed the application of a new biocatalyst for biodiesel production from residual agro-industrial fatty acids. A recombinant Pichia pastoris displaying lipase from Rhizomucor miehei (RML) on the cell surface, using the PIR-1 anchor system, were prepared using glycerol as the carbon source. The biocatalyst, named RML-PIR1 showed optimum temperature of 45 °C (74.0 U/L). The stability tests resulted in t1/2 of 3.49 and 2.15 h at 40 and 45 °C, respectively. RML-PIR1 was applied in esterification reactions using industrial co-products as substrates, palm fatty acid distillate (PFAD) and soybean fatty acid distillate (SFAD). The highest productivity was observed for SFAD after 48 h presenting 79.1% of conversion using only 10% of biocatalyst and free-solvent system. This is about ca. eight times higher than commercial free RML in the same conditions. The stabilizing agents study revealed that the treatment using glutaraldehyde (GA) and poly(ethylene glycol) (PEG) enabled increased stability and reuse of biocatalyst. It was observed by SEM analysis that the treatment modified the cell morphology. RML-PIR1-GA presented 87.9% of the initial activity after 6 reuses, whilst the activity of unmodified RML-PIR decreased by 40% after the first use. These results were superior to those obtained in the literature, making this new biocatalyst promising for biotechnological applications, such as the production of biofuels on a large scale.

... read more

Topics: Rhizomucor miehei (56%), Biodiesel production (54%), Cell morphology (53%) ... read more

1 Citations


Journal ArticleDOI: 10.1016/J.IJBIOMAC.2021.04.098
Sumayya1, Nafisa Gull2, Atif Islam2, Abdul Ghaffar1  +6 moreInstitutions (2)
Abstract: In this study, biodegradable polymeric films (BPFs) based on chitosan and acrylic acid cross-linked with 3-aminopropyl triethoxysilane (APTES) were developed for water retention and soil-conditioning applications in areas sufferings from water scarcity. A series of BPFs were prepared by varying the amount of silica nanoparticles (SiNPs) (0.67% to 2.6%) and a correlation of the optimum amount of SiNPs with thermal stability, morphology, swellability (at various pH), degradability, and anti-microbial activity were deduced. The obtained results showed that the NP 8 (containing 2.51% of SiNPs) exhibited the maximum absorption capacity (1815%) in distilled water, whereas NP6 (including 1.88% of SiNPs) expressed the maximum thermal stability (T50% at 375.61 °C). The microscopic images further strengthen this observation because the maximum number of micro-porous cavities was shown on the surface of NP8. The time-dependent swelling response in distilled water accomplished that hydrophilicity (percentage swelling) of films was enhanced with an increase in the concentration of SiNPs. All BPFs samples exhibited inhibitory response against both gram-positive (for Staphylococcus aureus was 2.9 cm for NP6) and gram-negative (for Escherichia coli was 0.9 cm for NP8) bacteria. The biodegradation test inferred that the degradation of BPFs in soil did not affect the soil fertility as nano-silica is proven as growth-promoting miniatures. It can be concluded that these BPFs may be efficiently employed in the agriculture sector for water retention and as a soil conditioner.

... read more

Topics: Distilled water (51%), Thermal stability (50%)

1 Citations


References
  More

378 results found


Open accessBook
01 Jan 1998-
Abstract: 1: Introduction. 2: What is Green Chemistry?. 3: Tools of Green Chemistry. 4: Principles of Green Chemistry. 5: Evaluating the Impacts of Chemistry. 6: Evaluating Feedstocks and Starting Materials. 7: Evaluating Reaction Types. 8: Evaluation of Methods to Design Safer Chemicals. 9: Illustrative Examples. 10: Future Trends in Green Chemistry

... read more

Topics: Green Chemistry Technology (71%), Green chemistry metrics (69%), Green chemistry (55%) ... read more

5,460 Citations


Journal ArticleDOI: 10.1016/J.BIOTECHADV.2008.09.002
Mahendra Rai1, Alka Yadav1, Aniket Gade1Institutions (1)
Abstract: Silver has been in use since time immemorial in the form of metallic silver, silver nitrate, silver sulfadiazine for the treatment of burns, wounds and several bacterial infections. But due to the emergence of several antibiotics the use of these silver compounds has been declined remarkably. Nanotechnology is gaining tremendous impetus in the present century due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Metallic silver in the form of silver nanoparticles has made a remarkable comeback as a potential antimicrobial agent. The use of silver nanoparticles is also important, as several pathogenic bacteria have developed resistance against various antibiotics. Hence, silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc.

... read more

Topics: Silver nitrate (69%), Silver nanoparticle (69%), Fungal-derived nanoparticles (60%) ... read more

4,505 Citations


Journal ArticleDOI: 10.1016/J.ENZMICTEC.2007.01.018
Abstract: In spite of their excellent catalytic properties, enzyme properties have to be usually improved before their implementation at industrial scale (where many cycles of high yield processes are desired). Generally, soluble enzymes have to be immobilized to be reused for long times in industrial reactors and, in addition to that, some other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, selectivity towards non-natural substrates. Some strategies to improve these enzyme properties during the performance of tailor-made enzyme immobilization protocols are here reviewed. In this way, immobilized enzymes may also exhibit much better functional properties than the corresponding soluble enzymes by very simple immobilization protocols. For example, multipoint and multisubunit covalent immobilization improve the stability of monomeric or multimeric enzymes. Moreover, enantioselectivity of different enzymes (e.g., lipases) may be also dramatically improved (from E = 1 to >100) by performing different immobilization protocols of the same enzyme. In all cases, enzyme engineering via immobilization techniques is perfectly compatible with other chemical or biological approaches to improve enzyme functions and the final success depend on the availability of a wide battery of immobilization protocols.

... read more

Topics: Immobilized enzyme (69%)

2,733 Citations


Journal ArticleDOI: 10.1016/J.ENZMICTEC.2005.10.016
Fariha Hasan1, Aamer Ali Shah1, Abdul Hameed1Institutions (1)
Abstract: Lipases are a class of enzymes which catalyse the hydrolysis of long chain triglycerides. Microbial lipases are currently receiving much attention with the rapid development of enzyme technology. Lipases constitute the most important group of biocatalysts for biotechnological applications. This review describes various industrial applications of microbial lipases in the detergent, food, flavour industry, biocatalytic resolution of pharmaceuticals, esters and amino acid derivatives, making of fine chemicals, agrochemicals, use as biosensor, bioremediation and cosmetics and perfumery.

... read more

1,630 Citations


Open accessJournal ArticleDOI: 10.1039/C3CS60075K
Roger A. Sheldon1, Sander van PeltInstitutions (1)
Abstract: In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

... read more

1,621 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20221
202110