scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Differential Behaviors of Atrial Versus Ventricular Fibroblasts A Potential Role for Platelet-Derived Growth Factor in Atrial-Ventricular Remodeling Differences

01 Apr 2008-Circulation (Lippincott Williams & Wilkins)-Vol. 117, Iss: 13, pp 1630-1641
TL;DR: Atrial fibroblasts behave differently than ventricular fibro Blasts over a range of in vitro and in vivo paradigms, with atrial Fibroblast showing enhanced reactivity that may explain greater atrial fibrotic responses.
Abstract: Background— In various heart disease paradigms, atria show stronger fibrotic responses than ventricles. The possibility that atrial and ventricular fibroblasts respond differentially to pathological stimuli has not been examined. Methods and Results— We compared various morphological, secretory, and proliferative response indexes of canine atrial versus ventricular fibroblasts. Cultured atrial fibroblasts showed faster cell surface area increases, distinct morphology at confluence, and greater α-smooth muscle actin expression than ventricular fibroblasts. Atrial fibroblast proliferation ([3H]thymidine incorporation) responses were consistently greater for a range of growth factors, including fetal bovine serum, platelet-derived growth factor (PDGF), basic fibroblast growth factor, angiotensin II, endothelin-1, and transforming growth factor-β1. Normal atrial tissue showed larger myofibroblast density compared with ventricular tissue, and the difference was exaggerated by congestive heart failure. Congesti...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Inflammatory mechanisms effectively promote atrial structural remodeling and importantly contribute to the initiation and perpetuation of atrial fibrillation.
Abstract: Atrial fibrosis with enhanced turnover and deposition of matrix proteins leads to inhomogeneous atrial electrical conduction and gives rise to electrical reentry circuits resulting in atrial fibrillation. The multifactorial pathogenesis of atrial fibrosis involves resident cardiac cells as well as infiltrating leukocytes, both generating and sequestering matrix metalloproteinases (MMPs), a key enzyme family involved in fibrosis. A growing body of evidence points toward an important role of reactive oxygen species (ROS) in the release and activation of pro-MMPs and the stimulation of pro-fibrotic cascades. Myeloperoxidase (MPO), a bactericidal enzyme released from activated polymorphonuclear neutrophils (PMN) is not only associated with a variety of cardiovascular diseases, but has also been shown to be mechanistically linked to atrial fibrosis and fibrillation. MPO catalyzes the generation of reactive species like hypochlorous acid, which affect intracellular signaling cascades in various cells and advance activation of pro-MMPs and deposition of atrial collagen resulting in atrial arrhythmias. Thus, inflammatory mechanisms effectively promote atrial structural remodeling and importantly contribute to the initiation and perpetuation of atrial fibrillation.

75 citations


Cites background from "Differential Behaviors of Atrial Ve..."

  • ...Atrial fibroblasts exhibit a markedly different gene expression profile and a profoundly increased disposition to proliferate and differentiate in culture and in vivo as compared to ventricular fibroblasts (Burstein et al., 2008)....

    [...]

  • ...Healthy atrial myocardium not only contains more fibroblasts than ventricular myocardium (Hinescu et al., 2006; Burstein et al., 2008), but also displays a more pronounced response to pro-fibrotic stimuli....

    [...]

Journal ArticleDOI
TL;DR: This research presents a novel probabilistic approach that allows us to assess the importance of knowing the carrier and removal status of canine coronavirus, as a source of infection for other animals.
Abstract: Background: Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of resident fibroblasts. The global posttranscriptional mechanisms underlying fibroblast-to-myof...

73 citations

Journal ArticleDOI
TL;DR: This review focuses on the recent advances in understanding molecular mechanisms of Ca2+ signaling in cardiac fibrogenesis, and potential role of Ca(2+)-permeable channels, in particular, the transient potential (TRP) channels in fibrotic heart disease.
Abstract: Cardiac fibrosis is associated with most cardiac diseases. Fibrosis is an accumulation of excessive extracellular matrix proteins (ECM) synthesized by cardiac fibroblasts and myofibroblasts. Fibroblasts are the most prevalent cell type in the heart, comprising 75% of cardiac cells. Myofibroblasts are hardly present in healthy normal heart tissue, but appear abundantly in diseased hearts. Cardiac fibroblasts are activated by a variety of pathological stimuli, such as myocardial injury, oxidative stress, mechanical stretch, and elevated autocrine-paracrine mediators, thereby undergoing proliferation, differentiation to myofibroblasts, and production of various cytokines and ECM proteins. A number of signaling pathways and bioactive molecules are involved and work in concert to activate fibroblasts and myofibroblasts in the fibrogenesis cascade. Fibroblasts and myofibroblasts are not only principal ECM producers, but also play a central role in fibrogenesis and myocardial remodeling in fibrotic heart disease. Thus, understanding the biological processes of cardiac fibroblasts will provide novel insights into the underlying mechanisms of fibrosis and provide potential targets for developing antifibrotic drugs. Recent studies demonstrate that Ca2+ signal is essential for fibroblast proliferation, differentiation, and ECM-protein production. This review focuses on the recent advances in understanding molecular mechanisms of Ca2+ signaling in cardiac fibrogenesis, and potential role of Ca2+-permeable channels, in particular, the transient potential (TRP) channels in fibrotic heart disease. TRP channels are highly expressed in cardiac fibroblasts. TRPM7 has been shown to be essential in TGFβ1 mediated fibrogenesis, and TRPC3 has been demonstrated to play an essential role in regulating fibroblast function. Thus, the Ca2+-permeable TRP channels may serve as potential novel targets for developing anti-fibrotic drugs.

73 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that atrial fibrosis and enhanced vulnerability to AF evoked by pressure overload can be attenuated by pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, via suppression of inflammatory profibrotic signals.

71 citations

Journal ArticleDOI
TL;DR: Heart failure is a culmination of pathological processes presenting with debilitating symptoms that highlight a complex interplay between immunological, hormonal, and metabolic systems resulting in impaired cardiac function.
Abstract: Heart failure (HF) is a culmination of pathological processes presenting with debilitating symptoms that highlight a complex interplay between immunological, hormonal, and metabolic systems resulting in impaired cardiac function. HF has a major impact on the quality of life and longevity of the

71 citations

References
More filters
Journal ArticleDOI
TL;DR: It is shown that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart.
Abstract: Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-β1 (TGF-β1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.

1,908 citations

Journal ArticleDOI
TL;DR: Experimental CHF strongly promotes the induction of sustained AF by causing interstitial fibrosis that interferes with local conduction, with important potential implications for understanding, treating, and preventing AF related to CHF.
Abstract: Background—Studies of atrial fibrillation (AF) due to atrial tachycardia have provided insights into the remodeling mechanisms by which “AF begets AF” but have not elucidated the substrate that initially supports AF before remodeling occurs. We studied the effects of congestive heart failure (CHF), an entity strongly associated with clinical AF, on atrial electrophysiology in the dog and compared the results with those in dogs subjected to rapid atrial pacing (RAP; 400 bpm) with a controlled ventricular rate (AV block plus ventricular pacemaker at 80 bpm). Methods and Results—CHF induced by 5 weeks of rapid ventricular pacing (220 to 240 bpm) increased the duration of AF induced by burst pacing (from 8±4 seconds in control dogs to 535±82 seconds; P<0.01), similar to the effect of 1 week of RAP (713±300 seconds). In contrast to RAP, CHF did not alter atrial refractory period, refractoriness heterogeneity, or conduction velocity at a cycle length of 360 ms; however, CHF dogs had a substantial increase in th...

1,343 citations

Journal ArticleDOI
TL;DR: Cultured fetal and adult human fibroblasts maintained key features of HOX gene expression patterns established during embryogenesis, suggesting that HOX genes may direct topographic differentiation and underlie the detailed positional memory in fibro Blasts.
Abstract: A fundamental feature of the architecture and functional design of vertebrate animals is a stroma, composed of extracellular matrix and mesenchymal cells, which provides a structural scaffold and conduit for blood and lymphatic vessels, nerves, and leukocytes. Reciprocal interactions between mesenchymal and epithelial cells are known to play a critical role in orchestrating the development and morphogenesis of tissues and organs, but the roles played by specific stromal cells in controlling the design and function of tissues remain poorly understood. The principal cells of stromal tissue are called fibroblasts, a catch-all designation that belies their diversity. We characterized genome-wide patterns of gene expression in cultured fetal and adult human fibroblasts derived from skin at different anatomical sites. Fibroblasts from each site displayed distinct and characteristic transcriptional patterns, suggesting that fibroblasts at different locations in the body should be considered distinct differentiated cell types. Notable groups of differentially expressed genes included some implicated in extracellular matrix synthesis, lipid metabolism, and cell signaling pathways that control proliferation, cell migration, and fate determination. Several genes implicated in genetic diseases were found to be expressed in fibroblasts in an anatomic pattern that paralleled the phenotypic defects. Finally, adult fibroblasts maintained key features of HOX gene expression patterns established during embryogenesis, suggesting that HOX genes may direct topographic differentiation and underlie the detailed positional memory in fibroblasts.

1,055 citations

Journal ArticleDOI
14 Jun 1996-Cell
TL;DR: The two PDGF null phenotypes reveal analogous morphogenetic functions for myofibroblast-type cells in lung and kidney organogenesis, and show that PDGF-B is required in the ontogeny of kidney mesangial cells.

854 citations

Journal ArticleDOI
02 Nov 1990-Cell
TL;DR: TGF-beta induces proliferation of connective tissue cells at low concentrations by stimulating autocrine PDGF-AA secretion, which at higher concentrations of TGF- beta, is decreased by down-regulation of PDGF receptor alpha subunits and perhaps by direct growth inhibition.

760 citations