scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Differential Behaviors of Atrial Versus Ventricular Fibroblasts A Potential Role for Platelet-Derived Growth Factor in Atrial-Ventricular Remodeling Differences

01 Apr 2008-Circulation (Lippincott Williams & Wilkins)-Vol. 117, Iss: 13, pp 1630-1641
TL;DR: Atrial fibroblasts behave differently than ventricular fibro Blasts over a range of in vitro and in vivo paradigms, with atrial Fibroblast showing enhanced reactivity that may explain greater atrial fibrotic responses.
Abstract: Background— In various heart disease paradigms, atria show stronger fibrotic responses than ventricles. The possibility that atrial and ventricular fibroblasts respond differentially to pathological stimuli has not been examined. Methods and Results— We compared various morphological, secretory, and proliferative response indexes of canine atrial versus ventricular fibroblasts. Cultured atrial fibroblasts showed faster cell surface area increases, distinct morphology at confluence, and greater α-smooth muscle actin expression than ventricular fibroblasts. Atrial fibroblast proliferation ([3H]thymidine incorporation) responses were consistently greater for a range of growth factors, including fetal bovine serum, platelet-derived growth factor (PDGF), basic fibroblast growth factor, angiotensin II, endothelin-1, and transforming growth factor-β1. Normal atrial tissue showed larger myofibroblast density compared with ventricular tissue, and the difference was exaggerated by congestive heart failure. Congesti...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: For the first time using individual cells, LMW-FGF-2 was observed to attenuate cardiac myofibroblast activation and prevent local cell-mediated ECM perturbations and may prevent progressive maladaptive chamber remodeling and tissue fibrosis for patients with diverse structural heart diseases.
Abstract: Tissue fibrosis and chamber remodeling is a hallmark of the failing heart and the final common pathway for heart failure of diverse etiologies. Sustained elevation of pro-fibrotic cytokine transforming growth factor-beta1 (TGFβ1) induces cardiac myofibroblast-mediated fibrosis and progressive structural tissue remodeling. We examined the effects of low molecular weight fibroblast growth factor (LMW-FGF-2) on human cardiac myofibroblast-mediated extracellular matrix (ECM) dysregulation and remodeling. Human cardiac biopsies were obtained during open-heart surgery and myofibroblasts were isolated, passaged, and seeded within type I collagen matrices. To induce myofibroblast activation and ECM remodeling, myofibroblast-seeded collagen gels were exposed to TGFβ1. The extent of ECM contraction, myofibroblast activation, ECM dysregulation, and cell apoptosis was determined in the presence of LMW-FGF-2 and compared to its absence. Using a novel floating nylon-grid supported thin collagen gel culture platform system, myofibroblast activation and local ECM remodeling around isolated single cells was imaged using confocal microscopy and quantified by image analysis. TGFβ1 induced significant myofibroblast activation and ECM dysregulation as evidenced by collagen gel contraction, structural ECM remodeling, collagen synthesis, ECM degradation, and altered TIMP expression. LMW-FGF-2 significantly attenuated TGFβ1 induced myofibroblast-mediated ECM remodeling. These observations were similar using either ventricular or atrial-derived cardiac myofibroblasts. In addition, for the first time using individual cells, LMW-FGF-2 was observed to attenuate cardiac myofibroblast activation and prevent local cell-mediated ECM perturbations. LMW-FGF-2 attenuates human cardiac myofibroblast-mediated ECM remodeling and may prevent progressive maladaptive chamber remodeling and tissue fibrosis for patients with diverse structural heart diseases.

58 citations

Journal ArticleDOI
TL;DR: Remarkably, overexpression of c-Ski led to a stepwise reduction of the myofibroblast marker α-smooth muscle actin with increasing multiplicity of infection, and these results indicate that 95-kDa c-LacZ-infected and uninfected controls, due to induction of apoptosis, may effect a loss of theMy ofibroblastic phenotype.
Abstract: Cardiac myofibroblasts are key players in chronic remodeling of the cardiac extracellular matrix, which is mediated in part by elevated transforming growth factor-β₁ (TGF-β₁). The c-Ski proto-oncoprotein has been shown to modify TGF-β₁ post-receptor signaling through receptor-activated Smads (R-Smads); however, little is known about how c-Ski regulates fibroblast phenotype and function. We sought to elucidate the function of c-Ski in primary cardiac myofibroblasts using a c-Ski overexpression system. Cardiac myofibroblasts expressed three forms of c-Ski with the predominant band at 105 kDa, and adenoviral c-Ski treatment resulted in overexpression of 95-kDa c-Ski in cellular nuclei. Exogenous c-Ski led to significant inhibition of type I collagen secretion and myofibroblast contractility using two-dimensional semifloating gel contraction assay in both basal and with TGF-β₁ (10 ng/ml for 24 h) stimulation. Overexpressed c-Ski did not inhibit nuclear translocation of phosphorylated R-Smad2, despite their binding, as demonstrated by immunoprecipitation. Acute treatment of primary myofibroblasts with TGF-β₁ in vitro revealed a marked nuclear shuttling of c-Ski at 24 and 48 h following stimulation. Remarkably, overexpression of c-Ski led to a stepwise reduction of the myofibroblast marker α-smooth muscle actin with increasing multiplicity of infection, and these results indicate that 95-kDa c-Ski overexpression may effect a loss of the myofibroblastic phenotype. Furthermore, adenovirus (Ad) for hemagglutinin-tagged c-Ski infection led to a reduction in the number of myofibroblasts versus Ad-LacZ-infected and uninfected controls, due to induction of apoptosis. Finally, we observed a significant increase in 105-kDa c-Ski in the cytosolic fraction of cells of the infarct scar and adjacent remnant myocardium vs. noninfarcted controls.

58 citations


Cites background from "Differential Behaviors of Atrial Ve..."

  • ...Fibroblast diversity occurs among atria and ventricles, because fibroblasts from these tissues respond differentially to pathological stimuli (3)....

    [...]

  • ...Because fibroblasts are a diverse group of cells with topographic differentiation from organ to organ including heart (3, 4), the effect(s) of c-Ski may be quite different in fibroblasts from skin vs....

    [...]

Journal Article
TL;DR: The results of this study suggest that inflammatory profibrotic mechanisms are involved in this pressure-overloaded AF model and suggest that pioglitazone is effective at attenuating atrial fibrosis, possibly via suppression of MCP-1-mediated inflammatory profIBrotic processes.
Abstract: Background: We tested the hypothesis that atrial fibrosis and increased vulnerability to atrial fibrillation (AF) evoked by pressure overload could be attenuated by pioglitazone, a peroxisome proli...

56 citations

Journal ArticleDOI
TL;DR: Tachycardia-mediated cardiomyopathy patients exhibit differences in LV structure and function including diffuse fibrosis long after arrhythmia cure, indicating that recovery is incomplete.
Abstract: Background—Successful arrhythmia ablation normalizes ejection fraction (EF) in tachycardia-mediated cardiomyopathy, but recurrent heart failure and late sudden death have been reported. The aim of ...

55 citations


Cites background from "Differential Behaviors of Atrial Ve..."

  • ...In a canine model of tachypacing-induced heart failure, isolated ventricular fibroblasts exhibited increased proliferation rates.(29) Interestingly, phenotypic changes in TMC fibroblast biology appear to remain stable for several generations of cell culture passages....

    [...]

Journal ArticleDOI
TL;DR: Tranilast prevented atrial remodeling and suppressed AF development in a canine model and its inhibition of TGF-β1 and Rac1 overexpression may contribute to its antiremodeling effects.

55 citations

References
More filters
Journal ArticleDOI
TL;DR: It is shown that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart.
Abstract: Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-β1 (TGF-β1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.

1,908 citations

Journal ArticleDOI
TL;DR: Experimental CHF strongly promotes the induction of sustained AF by causing interstitial fibrosis that interferes with local conduction, with important potential implications for understanding, treating, and preventing AF related to CHF.
Abstract: Background—Studies of atrial fibrillation (AF) due to atrial tachycardia have provided insights into the remodeling mechanisms by which “AF begets AF” but have not elucidated the substrate that initially supports AF before remodeling occurs. We studied the effects of congestive heart failure (CHF), an entity strongly associated with clinical AF, on atrial electrophysiology in the dog and compared the results with those in dogs subjected to rapid atrial pacing (RAP; 400 bpm) with a controlled ventricular rate (AV block plus ventricular pacemaker at 80 bpm). Methods and Results—CHF induced by 5 weeks of rapid ventricular pacing (220 to 240 bpm) increased the duration of AF induced by burst pacing (from 8±4 seconds in control dogs to 535±82 seconds; P<0.01), similar to the effect of 1 week of RAP (713±300 seconds). In contrast to RAP, CHF did not alter atrial refractory period, refractoriness heterogeneity, or conduction velocity at a cycle length of 360 ms; however, CHF dogs had a substantial increase in th...

1,343 citations

Journal ArticleDOI
TL;DR: Cultured fetal and adult human fibroblasts maintained key features of HOX gene expression patterns established during embryogenesis, suggesting that HOX genes may direct topographic differentiation and underlie the detailed positional memory in fibro Blasts.
Abstract: A fundamental feature of the architecture and functional design of vertebrate animals is a stroma, composed of extracellular matrix and mesenchymal cells, which provides a structural scaffold and conduit for blood and lymphatic vessels, nerves, and leukocytes. Reciprocal interactions between mesenchymal and epithelial cells are known to play a critical role in orchestrating the development and morphogenesis of tissues and organs, but the roles played by specific stromal cells in controlling the design and function of tissues remain poorly understood. The principal cells of stromal tissue are called fibroblasts, a catch-all designation that belies their diversity. We characterized genome-wide patterns of gene expression in cultured fetal and adult human fibroblasts derived from skin at different anatomical sites. Fibroblasts from each site displayed distinct and characteristic transcriptional patterns, suggesting that fibroblasts at different locations in the body should be considered distinct differentiated cell types. Notable groups of differentially expressed genes included some implicated in extracellular matrix synthesis, lipid metabolism, and cell signaling pathways that control proliferation, cell migration, and fate determination. Several genes implicated in genetic diseases were found to be expressed in fibroblasts in an anatomic pattern that paralleled the phenotypic defects. Finally, adult fibroblasts maintained key features of HOX gene expression patterns established during embryogenesis, suggesting that HOX genes may direct topographic differentiation and underlie the detailed positional memory in fibroblasts.

1,055 citations

Journal ArticleDOI
14 Jun 1996-Cell
TL;DR: The two PDGF null phenotypes reveal analogous morphogenetic functions for myofibroblast-type cells in lung and kidney organogenesis, and show that PDGF-B is required in the ontogeny of kidney mesangial cells.

854 citations

Journal ArticleDOI
02 Nov 1990-Cell
TL;DR: TGF-beta induces proliferation of connective tissue cells at low concentrations by stimulating autocrine PDGF-AA secretion, which at higher concentrations of TGF- beta, is decreased by down-regulation of PDGF receptor alpha subunits and perhaps by direct growth inhibition.

760 citations