scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Differential Behaviors of Atrial Versus Ventricular Fibroblasts A Potential Role for Platelet-Derived Growth Factor in Atrial-Ventricular Remodeling Differences

01 Apr 2008-Circulation (Lippincott Williams & Wilkins)-Vol. 117, Iss: 13, pp 1630-1641
TL;DR: Atrial fibroblasts behave differently than ventricular fibro Blasts over a range of in vitro and in vivo paradigms, with atrial Fibroblast showing enhanced reactivity that may explain greater atrial fibrotic responses.
Abstract: Background— In various heart disease paradigms, atria show stronger fibrotic responses than ventricles. The possibility that atrial and ventricular fibroblasts respond differentially to pathological stimuli has not been examined. Methods and Results— We compared various morphological, secretory, and proliferative response indexes of canine atrial versus ventricular fibroblasts. Cultured atrial fibroblasts showed faster cell surface area increases, distinct morphology at confluence, and greater α-smooth muscle actin expression than ventricular fibroblasts. Atrial fibroblast proliferation ([3H]thymidine incorporation) responses were consistently greater for a range of growth factors, including fetal bovine serum, platelet-derived growth factor (PDGF), basic fibroblast growth factor, angiotensin II, endothelin-1, and transforming growth factor-β1. Normal atrial tissue showed larger myofibroblast density compared with ventricular tissue, and the difference was exaggerated by congestive heart failure. Congesti...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review summarizes the current literature on the roles of myofibroblasts, MMPs, and ECM proteins in MI-induced LV remodeling and discusses future research directions that are needed to further elucidate the molecular mechanisms of ECM actions to optimize cardiac repair.
Abstract: The cardiac extracellular matrix (ECM) fills the space between cells, supports tissue organization, and transduces mechanical, chemical, and biological signals to regulate homeostasis of the left ventricle (LV). Following myocardial infarction (MI), a multitude of ECM proteins are synthesized to replace myocyte loss and form a reparative scar. Activated fibroblasts (myofibroblasts) are the primary source of ECM proteins, thus playing a key role in cardiac repair. A balanced turnover of ECM through regulation of synthesis by myofibroblasts and degradation by matrix metalloproteinases (MMPs) is critical for proper scar formation. In this review, we summarize the current literature on the roles of myofibroblasts, MMPs, and ECM proteins in MI-induced LV remodeling. In addition, we discuss future research directions that are needed to further elucidate the molecular mechanisms of ECM actions to optimize cardiac repair.

146 citations


Cites background from "Differential Behaviors of Atrial Ve..."

  • ...For example, fibroblasts from the atria respond differently to pathological stimuli compared with fibroblasts from the ventricle, denoting evidence of cellular diversity [7]....

    [...]

Journal ArticleDOI
TL;DR: It appears HDAC-inhibition reverses atrial fibrosis, connexin40 remodeling and atrial arrhythmia vulnerability independent of angiotensin II in cardiac hypertrophy.

138 citations

Journal ArticleDOI
01 Feb 2010-Europace
TL;DR: The various types of animal models used for AF research are discussed, the principle mechanisms governing atrial arrhythmias in each model are reviewed, and some guidelines for model selection for various purposes are provided.
Abstract: Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. A variety of animal models have been used to study the pathophysiology of AF, including molecular basis, ion-current determinants, anatomical features, and macroscopic mechanisms. In addition, animal models play a key role in the development of new therapeutic approaches, whether drug-based, molecular therapeutics, or device-related. This article discusses the various types of animal models that have been used for AF research, reviews the principle mechanisms governing atrial arrhythmias in each model, and provides some guidelines for model selection for various purposes.

136 citations

Journal ArticleDOI
TL;DR: Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling, and identify TNF α as a key factor in the pathology of intense exercise-induced AF.
Abstract: Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF.

132 citations

Journal ArticleDOI
TL;DR: Elevated atrial ET-1 content is associated with increased LA size, AF rhythm, hypertension, and heart failure and probably contributes to AF persistence, and interventions that reduce atrialET-1 expression and/or block its receptors may slow AF progression.
Abstract: Background— Atrial fibrillation (AF) promotes atrial remodeling and can develop secondary to heart failure or mitral valve disease. Cardiac endothelin-1 (ET-1) expression responds to wall stress and can promote myocyte hypertrophy and interstitial fibrosis. We tested the hypothesis that atrial ET-1 is elevated in AF and is associated with AF persistence. Methods and Results— Left atrial appendage tissue was studied from coronary artery bypass graft, valve repair, and/or Maze procedure in patients in sinus rhythm with no history of AF (SR, n=21), with history of AF but in SR at surgery (AF/SR, n=23), and in AF at surgery (AF/AF, n=32). The correlation of LA size with atrial protein and mRNA expression of ET-1 and ET-1 receptors (ETAR and ETBR)was evaluated. LA appendage ET-1 content was higher in AF/AF than in SR, but receptor levels were similar. Immunostaining revealed that ET-1 and its receptors were present both in atrial myocytes and in fibroblasts. ET-1 content was positively correlated with LA size, heart failure, AF persistence, and severity of mitral regurgitation. Multivariate analysis confirmed associations of ET-1 with AF, hypertension, and LA size. LA size was associated with ET-1 and MR severity. ET-1 mRNA levels were correlated with genes involved in cardiac dilatation, hypertrophy, and fibrosis. Conclusions— Elevated atrial ET-1 content is associated with increased LA size, AF rhythm, hypertension, and heart failure. ET-1 is associated with atrial dilatation, fibrosis, and hypertrophy and probably contributes to AF persistence. Interventions that reduce atrial ET-1 expression and/or block its receptors may slow AF progression.

127 citations

References
More filters
Journal ArticleDOI
TL;DR: It is shown that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart.
Abstract: Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-β1 (TGF-β1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.

1,908 citations

Journal ArticleDOI
TL;DR: Experimental CHF strongly promotes the induction of sustained AF by causing interstitial fibrosis that interferes with local conduction, with important potential implications for understanding, treating, and preventing AF related to CHF.
Abstract: Background—Studies of atrial fibrillation (AF) due to atrial tachycardia have provided insights into the remodeling mechanisms by which “AF begets AF” but have not elucidated the substrate that initially supports AF before remodeling occurs. We studied the effects of congestive heart failure (CHF), an entity strongly associated with clinical AF, on atrial electrophysiology in the dog and compared the results with those in dogs subjected to rapid atrial pacing (RAP; 400 bpm) with a controlled ventricular rate (AV block plus ventricular pacemaker at 80 bpm). Methods and Results—CHF induced by 5 weeks of rapid ventricular pacing (220 to 240 bpm) increased the duration of AF induced by burst pacing (from 8±4 seconds in control dogs to 535±82 seconds; P<0.01), similar to the effect of 1 week of RAP (713±300 seconds). In contrast to RAP, CHF did not alter atrial refractory period, refractoriness heterogeneity, or conduction velocity at a cycle length of 360 ms; however, CHF dogs had a substantial increase in th...

1,343 citations

Journal ArticleDOI
TL;DR: Cultured fetal and adult human fibroblasts maintained key features of HOX gene expression patterns established during embryogenesis, suggesting that HOX genes may direct topographic differentiation and underlie the detailed positional memory in fibro Blasts.
Abstract: A fundamental feature of the architecture and functional design of vertebrate animals is a stroma, composed of extracellular matrix and mesenchymal cells, which provides a structural scaffold and conduit for blood and lymphatic vessels, nerves, and leukocytes. Reciprocal interactions between mesenchymal and epithelial cells are known to play a critical role in orchestrating the development and morphogenesis of tissues and organs, but the roles played by specific stromal cells in controlling the design and function of tissues remain poorly understood. The principal cells of stromal tissue are called fibroblasts, a catch-all designation that belies their diversity. We characterized genome-wide patterns of gene expression in cultured fetal and adult human fibroblasts derived from skin at different anatomical sites. Fibroblasts from each site displayed distinct and characteristic transcriptional patterns, suggesting that fibroblasts at different locations in the body should be considered distinct differentiated cell types. Notable groups of differentially expressed genes included some implicated in extracellular matrix synthesis, lipid metabolism, and cell signaling pathways that control proliferation, cell migration, and fate determination. Several genes implicated in genetic diseases were found to be expressed in fibroblasts in an anatomic pattern that paralleled the phenotypic defects. Finally, adult fibroblasts maintained key features of HOX gene expression patterns established during embryogenesis, suggesting that HOX genes may direct topographic differentiation and underlie the detailed positional memory in fibroblasts.

1,055 citations

Journal ArticleDOI
14 Jun 1996-Cell
TL;DR: The two PDGF null phenotypes reveal analogous morphogenetic functions for myofibroblast-type cells in lung and kidney organogenesis, and show that PDGF-B is required in the ontogeny of kidney mesangial cells.

854 citations

Journal ArticleDOI
02 Nov 1990-Cell
TL;DR: TGF-beta induces proliferation of connective tissue cells at low concentrations by stimulating autocrine PDGF-AA secretion, which at higher concentrations of TGF- beta, is decreased by down-regulation of PDGF receptor alpha subunits and perhaps by direct growth inhibition.

760 citations