scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Differential Capacitance Study of Stress‐Annealed Pyrolytic Graphite Electrodes

01 Nov 1970-Journal of The Electrochemical Society (The Electrochemical Society)-Vol. 118, Iss: 5, pp 711-714
TL;DR: In this paper, the capacity of electrodes prepared from high pressure stress-annealed pyrolytic graphite has been examined in aqueous solutions using an a.c. impedance bridge.
Abstract: : The non-faradaic capacity of electrodes prepared from high pressure stress-annealed pyrolytic graphite has been examined in aqueous solutions using an a.c. impedance bridge. SUCH MATERIALS HAVE A ROCKING ANGLE (x-ray diffraction) as small as 0.4 degrees and the properties of surfaces oriented parallel to the basal plane approach rather closely those of single crystal graphite. The differential capacity measured on this surface has a near parabolic dependence on electrode potential with no evidence of a hump and a minimum of about 3 microfarads/sq. cm in 0.9 M NaF. This low value is explained on the basis that a substantial fraction of the potential change between the electrode bulk and the solution bulk occurs across a space charge layer within the graphite.
Citations
More filters
Journal ArticleDOI
TL;DR: The results strongly indicate that the long-standing puzzle about the interfacial capacitance in carbon-based electrodes has a quantum origin, and suggest that charged impurities also influences the quantum capacitance.
Abstract: Graphene has received widespread attention due to its unique electronic properties. Much of the research conducted so far has focused on electron mobility, which is determined by scattering from charged impurities and other inhomogeneities. However, another important quantity, the quantum capacitance, has been largely overlooked. Here, we report a direct measurement of the quantum capacitance of graphene as a function of gate potential using a three-electrode electrochemical configuration. The quantum capacitance has a non-zero minimum at the Dirac point and a linear increase on both sides of the minimum with relatively small slopes. Our findings -- which are not predicted by theory for ideal graphene -- suggest that charged impurities also influences the quantum capacitance. We also measured the capacitance in aqueous solutions at different ionic concentrations, and our results strongly indicate that the long-standing puzzle about the interfacial capacitance in carbon-based electrodes has a quantum origin.

1,492 citations

Journal ArticleDOI
24 Sep 2010-Science
TL;DR: Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces, and capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.
Abstract: Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

1,233 citations

Journal ArticleDOI
TL;DR: An "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide to provide a prototype for a broad range of thin-film based energy storage devices.
Abstract: With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an “in-plane” fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1−2 graphene layers, to reach specific capacities up to 80 μFcm−2, while much higher (394 μFcm−2) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad ran...

1,149 citations

Journal ArticleDOI
TL;DR: In this paper, the specific capacitance of activated carbons is determined by both the ratio of edge/basal orientation and the nature of functional groups on the surface, and the difference between the edge and the basal layers results from the semiconductive properties of basal layer.

616 citations

Journal ArticleDOI
TL;DR: The electrical double-layer capacitance in one to five-layer graphene is measured and it is found that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers.
Abstract: Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

583 citations