scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components.

01 Oct 1999-Immunity (Cell Press)-Vol. 11, Iss: 4, pp 443-451
TL;DR: It is demonstrated that TLR2 and TLR4 recognize different bacterial cell wall components in vivo andTLR2 plays a major role in Gram-positive bacterial recognition.
About: This article is published in Immunity.The article was published on 1999-10-01 and is currently open access. It has received 3364 citations till now. The article focuses on the topics: Gram-negative bacteria & Peptidoglycan.
Citations
More filters
Journal ArticleDOI
TL;DR: Microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens to distinguish infectious nonself from noninfectious self.
Abstract: ▪ Abstract The innate immune system is a universal and ancient form of host defense against infection. Innate immune recognition relies on a limited number of germline-encoded receptors. These receptors evolved to recognize conserved products of microbial metabolism produced by microbial pathogens, but not by the host. Recognition of these molecular structures allows the immune system to distinguish infectious nonself from noninfectious self. Toll-like receptors play a major role in pathogen recognition and initiation of inflammatory and immune responses. Stimulation of Toll-like receptors by microbial products leads to the activation of signaling pathways that result in the induction of antimicrobial genes and inflammatory cytokines. In addition, stimulation of Toll-like receptors triggers dendritic cell maturation and results in the induction of costimulatory molecules and increased antigen-presenting capacity. Thus, microbial recognition by Toll-like receptors helps to direct adaptive immune responses ...

8,041 citations


Cites background from "Differential roles of TLR2 and TLR4..."

  • ...The list includes peptidoglycan (73, 77), bacterial lipoproteins (78–80), a phenol soluble factor from Staphylococcus epidermidis (81), LPS from Prophyromonas gingivitis (82) andLeptospira interrogans(which differs in structure from the LPS of gram-negative bacteria) (83), glycosylphosphotidylinositol lipid from Trypanosoma cruzi (84), and zymosan, a component of yeast cell walls (85)....

    [...]

Journal ArticleDOI
TL;DR: Rapid progress that has recently improved the understanding of the molecular mechanisms that mediate TLR signalling is reviewed.
Abstract: One of the mechanisms by which the innate immune system senses the invasion of pathogenic microorganisms is through the Toll-like receptors (TLRs), which recognize specific molecular patterns that are present in microbial components. Stimulation of different TLRs induces distinct patterns of gene expression, which not only leads to the activation of innate immunity but also instructs the development of antigen-specific acquired immunity. Here, we review the rapid progress that has recently improved our understanding of the molecular mechanisms that mediate TLR signalling.

7,906 citations

Journal ArticleDOI
07 Dec 2000-Nature
TL;DR: It is shown that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9, and vertebrate immune systems appear to have evolved a specific Toll- like receptor that distinguishes bacterial DNA from self-DNA.
Abstract: DNA from bacteria has stimulatory effects on mammalian immune cells, which depend on the presence of unmethylated CpG dinucleotides in the bacterial DNA. In contrast, mammalian DNA has a low frequency of CpG dinucleotides, and these are mostly methylated; therefore, mammalian DNA does not have immuno-stimulatory activity. CpG DNA induces a strong T-helper-1-like inflammatory response. Accumulating evidence has revealed the therapeutic potential of CpG DNA as adjuvants for vaccination strategies for cancer, allergy and infectious diseases. Despite its promising clinical use, the molecular mechanism by which CpG DNA activates immune cells remains unclear. Here we show that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9. TLR9-deficient (TLR9-/-) mice did not show any response to CpG DNA, including proliferation of splenocytes, inflammatory cytokine production from macrophages and maturation of dendritic cells. TLR9-/- mice showed resistance to the lethal effect of CpG DNA without any elevation of serum pro-inflammatory cytokine levels. The in vivo CpG-DNA-mediated T-helper type-1 response was also abolished in TLR9-/- mice. Thus, vertebrate immune systems appear to have evolved a specific Toll-like receptor that distinguishes bacterial DNA from self-DNA.

6,188 citations


Cites background from "Differential roles of TLR2 and TLR4..."

  • ...TLR2 and TLR4 are responsible for immune responses to peptidoglycan (PGN) and lipopolysaccharide (LPS), respectivel...

    [...]

Journal ArticleDOI
18 Oct 2001-Nature
TL;DR: It is shown that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-κB and the production of type I interferons (IFNs).
Abstract: Toll-like receptors (TLRs) are a family of innate immune-recognition receptors that recognize molecular patterns associated with microbial pathogens, and induce antimicrobial immune responses. Double-stranded RNA (dsRNA) is a molecular pattern associated with viral infection, because it is produced by most viruses at some point during their replication. Here we show that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-kappaB and the production of type I interferons (IFNs). TLR3-deficient (TLR3-/-) mice showed reduced responses to polyinosine-polycytidylic acid (poly(I:C)), resistance to the lethal effect of poly(I:C) when sensitized with d-galactosamine (d-GalN), and reduced production of inflammatory cytokines. MyD88 is an adaptor protein that is shared by all the known TLRs. When activated by poly(I:C), TLR3 induces cytokine production through a signalling pathway dependent on MyD88. Moreover, poly(I:C) can induce activation of NF-kappaB and mitogen-activated protein (MAP) kinases independently of MyD88, and cause dendritic cells to mature.

6,066 citations

Journal ArticleDOI
TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Abstract: The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.

5,915 citations

References
More filters
Journal ArticleDOI
11 Dec 1998-Science
TL;DR: The mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane.
Abstract: Mutations of the gene Lps selectively impede lipopolysaccharide (LPS) signal transduction in C3H/HeJ and C57BL/10ScCr mice, rendering them resistant to endotoxin yet highly susceptible to Gram-negative infection. The codominant Lpsd allele of C3H/HeJ mice was shown to correspond to a missense mutation in the third exon of the Toll-like receptor-4 gene (Tlr4), predicted to replace proline with histidine at position 712 of the polypeptide chain. C57BL/10ScCr mice are homozygous for a null mutation of Tlr4. Thus, the mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane. Destructive mutations of Tlr4 predispose to the development of Gram-negative sepsis, leaving most aspects of immune function intact.

7,553 citations

Journal ArticleDOI
24 Jul 1997-Nature
TL;DR: The cloning and characterization of a human homologue of the Drosophila toll protein (Toll) is reported, which has been shown to induce the innate immune response in adult Dosophila.
Abstract: . Like Drosophila Toll, human Toll is a type I transmembrane protein with an extracellular domain consisting of a leucine-rich repeat (LRR) domain, and a cytoplasmic domain homologous to the cytoplasmic domain of the human interleukin (IL)-1 receptor. Both Drosophila Toll and the IL-1 receptor are known to signal through the NF-kB pathway 5-7 . We show that a constitutively active mutant of human Toll transfected into human cell lines can induce the activation of NF-kB and the expression of NF-kB-controlled genes for the inflammatory cyto- kines IL-1, IL-6 and IL-8, as well as the expression of the co- stimulatory molecule B7.1, which is required for the activation of naive T cells. The Toll protein controls dorsal-ventral patterning in Drosophila embryos and activates the transcription factor Dorsal upon binding to its ligand Spatzle 8 . In adult Drosophila, the Toll/Dorsal signalling pathway participates in an anti-fungal immune response 2 . Signal- ling through Toll parallels the signalling pathway induced by the IL- 1 receptor (IL-1R) in mammalian cells: IL-1R signals through the NF-kB pathway, and Dorsal and its inhibitor Cactus are homo- logous to NF-kB and I-kB proteins, respectively 5,6 . Moreover, the cytoplasmic domain of Drosophila Toll is homologous to the cytoplasmic domain of IL-1R (ref. 9). Remarkably, the tobacco- virus-resistance gene that encodes N-protein is also similar to Toll in that it contains both a Toll signalling domain and an LRR domain 10 . It thus appears that the immune-response system mediated by Toll represents an ancient host defence mechanism 6 (Fig. 1). To inves- tigate the possibility that this pathway has been retained in the immune system of vertebrates, we used sequence and pattern searches 11 of the expressed-sequence tag (EST) database at the fragment was used to probe northern blots containing poly(A) + RNA from several organs. Most organs expressed two mRNA species: one of ,5 kilobases (kb) was predominant in most tissues except peripheral blood leukocytes (PBL), and corresponded to the length of the cDNA that we cloned. The lower band was ,4 kb long and this band was predominant in the PBL. The 4-kb band was not detectable in kidney, and liver did not contain any mRNA at all (Fig. 3). We also tested different mouse and human cell lines for expression of hToll mRNA by using PCR with reverse transcription (RT-PCR). We found mRNA for hToll in monocytes, macrophages, dendritic cells, g/d T cells, Th1 and Th2 a/b T cells, a small intestinal epithelial cell line, and a B-cell line (data not shown). The hToll gene is expressed most strongly in spleen and PBL (Fig. 3); its expression in other tissues may be due to the presence of macrophages and dendritic cells, in which it could act as an early-warning system for infection. Alternatively, hToll may be widely expressed because hToll signals through the conserved NF-kB pathway (see below) and NF- kB is a ubiquitous transcription factor. To characterize hToll functions and see whether it can induce transcription of immune response genes like dToll, we generated a dominant-positive mutant of hToll because the natural ligand of hToll is unknown. To produce a constitutively active mutant of hToll, we made use of genetic information from dToll: analysis of ventra- lizing mutants in Drosophila embryos had identified the function of the ectodomain C-flanking cysteine-rich region in dToll 16 as control- ling the activity of dToll in signal transduction. In three dominant

5,625 citations

Journal ArticleDOI
21 Sep 1990-Science
TL;DR: CD14, a differentiation antigen of monocytes, was found to bind complexes of LPS and LBP, and blockade of CD14 with monoclonal antibodies prevented synthesis of TNF-alpha by whole blood incubated with LPS.
Abstract: Leukocytes respond to lipopolysaccharide (LPS) at nanogram per milliliter concentrations with secretion of cytokines such as tumor necrosis factor-alpha (TNF-alpha). Excess secretion of TNF-alpha causes endotoxic shock, an often fatal complication of infection. LPS in the bloodstream rapidly binds to the serum protein, lipopolysaccharide binding protein (LBP), and cellular responses to physiological levels of LPS are dependent on LBP. CD14, a differentiation antigen of monocytes, was found to bind complexes of LPS and LBP, and blockade of CD14 with monoclonal antibodies prevented synthesis of TNF-alpha by whole blood incubated with LPS. Thus, LPS may induce responses by interacting with a soluble binding protein in serum that then binds the cell surface protein CD14.

4,048 citations