scispace - formally typeset
Search or ask a question
BookDOI

Differential scanning calorimetry

TL;DR: Theoretical Fundamentals of Differential Scanning Calorimeters and Modes of Operation are studied, as well as applications of differential scanning calorimetry, and evaluation of the performance of a Differential scanning Calorimeter.
Abstract: 1 Introduction.- 2 Types of Differential Scanning Calorimeters and Modes of Operation.- 3 Theoretical Fundamentals of Differential Scanning Calorimeters.- 4 Calibration of Differential Scanning Calorimeters.- 5 DSC Curves and Further Evaluation.- 6 Applications of Differential Scanning Calorimetry.- 7 Evaluation of the Performance of a Differential Scanning Calorimeter.- Appendix 1.- Appendix 2.- References.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the correlation between microstructure and mechanical as well as tribological properties of hard ceramic coatings and demonstrate that nanostructure dependent hardness increase (compared to hardness of the bulk counterparts) sustains higher annealing temperatures than hardness increase due to an increased density of point-and/or line-defects.

820 citations


Cites background from "Differential scanning calorimetry"

  • ...For example, phase transformation temperatures, enthalpies of transformation, thermal hysteresis data, and melting temperatures of a wide range of samples can be determined from one DSC measurement [174,175]....

    [...]

Journal ArticleDOI
TL;DR: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation as discussed by the authors.
Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation TES systems are used particularly in buildings and in industrial processes This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings The principles of several energy storage methods and calculation of storage capacities are described Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included

649 citations


Cites methods from "Differential scanning calorimetry"

  • ...Heat flux DSC is one of the most reliable methods of laboratory thermal analysis for testing heat storage capacity of PCM with a constant heating/cooling rate [77]....

    [...]

Journal ArticleDOI
TL;DR: In this article, an extensive review on the incorporation of PCM into construction materials and elements by direct incorporation, immersion, encapsulation, shape-stabilization and form-stable composite PCMs is presented.
Abstract: The building sector is the dominant energy consumer with a total 30% share of the overall energy consumption and accounts for one-third of the greenhouse gas emissions around the world. Moreover, in recent years the energy demands for buildings have increased very rapidly due to increase in the growth rate of population and improvement in living standards of people. Furthermore, fossil fuels will continue to dominate the world's primary energy by 2030. Thus, the increase in energy demand, shortage of fossil fuels and environmental concerns has provided impetus to the development of sustainable building and renewable energy resources. Thermal energy storage is an efficient method for applying to building envelopes to improve the energy efficiency of buildings. This, in turn, reduces the environmental impact related to energy usage. The combination of construction materials and PCM is an efficient way to increase the thermal energy storage capacity of construction elements. Therefore, an extensive review on the incorporation of PCM into construction materials and elements by direct incorporation, immersion, encapsulation, shape-stabilization and form-stable composite PCMs is presented. For the first time, the differentiation between shape-stabilized and form-stable composite PCM has been made. Moreover, various construction materials such as diatomite, expanded perlite and graphite, etc. which are used as supports for form-stable composite PCM along with their worldwide availability are extensively discussed. One of the main aims of this review paper is to focus on the test methods which are used to determine the chemical compatibility, thermal properties, thermal stability and thermal conductivity of the PCM. Hence, the details related to calibration, sample preparation, test cell and analysis of test results are comprehensively covered. Finally, because of the renewed interest in integration of PCM in wallboards and concrete, an up-to-date review with focus on PCM enhanced wallboard and concrete for building applications is added.

516 citations

Journal ArticleDOI
24 Jan 2011-Energies
TL;DR: A review of metal borohydrides with high hydrogen density can be found in this article, with a focus on the fundamental dehydrogenation and rehydrogenation properties.
Abstract: The prerequisite for widespread use of hydrogen as an energy carrier is the development of new materials that can safely store it at high gravimetric and volumetric densities. Metal borohydrides M(BH4)n (n is the valence of metal M), in particular, have high hydrogen density, and are therefore regarded as one such potential hydrogen storage material. For fuel cell vehicles, the goal for on-board storage systems is to achieve reversible store at high density but moderate temperature and hydrogen pressure. To this end, a large amount of effort has been devoted to improvements in their thermodynamic and kinetic aspects. This review provides an overview of recent research activity on various M(BH4)n, with a focus on the fundamental dehydrogenation and rehydrogenation properties and on providing guidance for material design in terms of tailoring thermodynamics and promoting kinetics for hydrogen storage.

414 citations

Journal Article
TL;DR: This paper reviews the best-known differential scanning calorimetries (DSCs), and describes here the most extensive applications of DSC in biology and nanoscience.
Abstract: This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience.

360 citations


Cites methods from "Differential scanning calorimetry"

  • ...stances and is the only method for direct determination of the enthalpy associated with the process of interest.(1,2) Calorimeters are used frequently in chemistry,(3) biochemistry,(4,5) cell biology,(6) biotechnology,(7) pharmacology,(8) and recently, in nanoscience(9) to measure thermodynamic prop-...

    [...]