# Digital Color Imaging

...read more

##### Citations

More filters

••

[...]

TL;DR: This article presents an overview of existing map processing techniques, bringing together the past and current research efforts in this interdisciplinary field, to characterize the advances that have been made, and to identify future research directions and opportunities.

Abstract: Maps depict natural and human-induced changes on earth at a fine resolution for large areas and over long periods of time. In addition, maps—especially historical maps—are often the only information source about the earth as surveyed using geodetic techniques. In order to preserve these unique documents, increasing numbers of digital map archives have been established, driven by advances in software and hardware technologies. Since the early 1980s, researchers from a variety of disciplines, including computer science and geography, have been working on computational methods for the extraction and recognition of geographic features from archived images of maps (digital map processing). The typical result from map processing is geographic information that can be used in spatial and spatiotemporal analyses in a Geographic Information System environment, which benefits numerous research fields in the spatial, social, environmental, and health sciences. However, map processing literature is spread across a broad range of disciplines in which maps are included as a special type of image. This article presents an overview of existing map processing techniques, with the goal of bringing together the past and current research efforts in this interdisciplinary field, to characterize the advances that have been made, and to identify future research directions and opportunities.

657 citations

••

[...]

TL;DR: This work demonstrates a convenient, versatile approach to dynamically fine-tuning emission in the full colour range from a new class of core-shell upconversion nanocrystals by adjusting the pulse width of infrared laser beams and suggests that the unprecedented colour tunability from these nanocry crystals is governed by a non-steady-state upconverting process.

Abstract: Developing light-harvesting materials with tunable emission colours has always been at the forefront of colour display technologies. The variation in materials composition, phase and structure can provide a useful tool for producing a wide range of emission colours, but controlling the colour gamut in a material with a fixed composition remains a daunting challenge. Here, we demonstrate a convenient, versatile approach to dynamically fine-tuning emission in the full colour range from a new class of core-shell upconversion nanocrystals by adjusting the pulse width of infrared laser beams. Our mechanistic investigations suggest that the unprecedented colour tunability from these nanocrystals is governed by a non-steady-state upconversion process. These findings provide keen insights into controlling energy transfer in out-of-equilibrium optical processes, while offering the possibility for the construction of true three-dimensional, full-colour display systems with high spatial resolution and locally addressable colour gamut.

626 citations

••

[...]

TL;DR: The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts, and the aliasing problem is addressed by applying filterbank techniques to 2-D directional interpolation.

Abstract: A cost-effective digital camera uses a single-image sensor, applying alternating patterns of red, green, and blue color filters to each pixel location. A way to reconstruct a full three-color representation of color images by estimating the missing pixel components in each color plane is called a demosaicing algorithm. This paper presents three inherent problems often associated with demosaicing algorithms that incorporate two-dimensional (2-D) directional interpolation: misguidance color artifacts, interpolation color artifacts, and aliasing. The level of misguidance color artifacts present in two images can be compared using metric neighborhood modeling. The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts. The aliasing problem is addressed by applying filterbank techniques to 2-D directional interpolation. The interpolation artifacts are reduced using a nonlinear iterative procedure. Experimental results using digital images confirm the effectiveness of this approach.

441 citations

••

[...]

TL;DR: The proposed fully automated vector technique can be easily implemented in either hardware or software; and incorporated in any existing microarray image analysis and gene expression tool.

Abstract: Vector processing operations use essential spectral and spatial information to remove noise and localize microarray spots. The proposed fully automated vector technique can be easily implemented in either hardware or software; and incorporated in any existing microarray image analysis and gene expression tool.

344 citations

••

[...]

TL;DR: An overview of the image processing pipeline is presented, first from a signal processing perspective and later from an implementation perspective, along with the tradeoffs involved.

Abstract: Digital still color cameras (DSCs) have gained significant popularity in recent years, with projected sales in the order of 44 million units by the year 2005. Such an explosive demand calls for an understanding of the processing involved and the implementation issues, bearing in mind the otherwise difficult problems these cameras solve. This article presents an overview of the image processing pipeline, first from a signal processing perspective and later from an implementation perspective, along with the tradeoffs involved.

323 citations

##### References

More filters

[...]

01 Jan 1967

TL;DR: The k-means algorithm as mentioned in this paper partitions an N-dimensional population into k sets on the basis of a sample, which is a generalization of the ordinary sample mean, and it is shown to give partitions which are reasonably efficient in the sense of within-class variance.

Abstract: The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k sets on the basis of a sample. The process, which is called 'k-means,' appears to give partitions which are reasonably efficient in the sense of within-class variance. That is, if p is the probability mass function for the population, S = {S1, S2, * *, Sk} is a partition of EN, and ui, i = 1, 2, * , k, is the conditional mean of p over the set Si, then W2(S) = ff=ISi f z u42 dp(z) tends to be low for the partitions S generated by the method. We say 'tends to be low,' primarily because of intuitive considerations, corroborated to some extent by mathematical analysis and practical computational experience. Also, the k-means procedure is easily programmed and is computationally economical, so that it is feasible to process very large samples on a digital computer. Possible applications include methods for similarity grouping, nonlinear prediction, approximating multivariate distributions, and nonparametric tests for independence among several variables. In addition to suggesting practical classification methods, the study of k-means has proved to be theoretically interesting. The k-means concept represents a generalization of the ordinary sample mean, and one is naturally led to study the pertinent asymptotic behavior, the object being to establish some sort of law of large numbers for the k-means. This problem is sufficiently interesting, in fact, for us to devote a good portion of this paper to it. The k-means are defined in section 2.1, and the main results which have been obtained on the asymptotic behavior are given there. The rest of section 2 is devoted to the proofs of these results. Section 3 describes several specific possible applications, and reports some preliminary results from computer experiments conducted to explore the possibilities inherent in the k-means idea. The extension to general metric spaces is indicated briefly in section 4. The original point of departure for the work described here was a series of problems in optimal classification (MacQueen [9]) which represented special

22,533 citations

••

[...]

Bell Labs

^{1}TL;DR: In this article, the authors derived necessary conditions for any finite number of quanta and associated quantization intervals of an optimum finite quantization scheme to achieve minimum average quantization noise power.

Abstract: It has long been realized that in pulse-code modulation (PCM), with a given ensemble of signals to handle, the quantum values should be spaced more closely in the voltage regions where the signal amplitude is more likely to fall. It has been shown by Panter and Dite that, in the limit as the number of quanta becomes infinite, the asymptotic fractional density of quanta per unit voltage should vary as the one-third power of the probability density per unit voltage of signal amplitudes. In this paper the corresponding result for any finite number of quanta is derived; that is, necessary conditions are found that the quanta and associated quantization intervals of an optimum finite quantization scheme must satisfy. The optimization criterion used is that the average quantization noise power be a minimum. It is shown that the result obtained here goes over into the Panter and Dite result as the number of quanta become large. The optimum quautization schemes for 2^{b} quanta, b=1,2, \cdots, 7 , are given numerically for Gaussian and for Laplacian distribution of signal amplitudes.

9,657 citations

••

[...]

TL;DR: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data.

Abstract: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data. The basic properties of the algorithm are discussed and demonstrated by examples. Quite general distortion measures and long blocklengths are allowed, as exemplified by the design of parameter vector quantizers of ten-dimensional vectors arising in Linear Predictive Coded (LPC) speech compression with a complicated distortion measure arising in LPC analysis that does not depend only on the error vector.

7,865 citations

•

[...]

TL;DR: The author explains the design and implementation of the Levinson-Durbin Algorithm, which automates the very labor-intensive and therefore time-heavy and expensive process of designing and implementing a Quantizer.

Abstract: 1 Introduction- 11 Signals, Coding, and Compression- 12 Optimality- 13 How to Use this Book- 14 Related Reading- I Basic Tools- 2 Random Processes and Linear Systems- 21 Introduction- 22 Probability- 23 Random Variables and Vectors- 24 Random Processes- 25 Expectation- 26 Linear Systems- 27 Stationary and Ergodic Properties- 28 Useful Processes- 29 Problems- 3 Sampling- 31 Introduction- 32 Periodic Sampling- 33 Noise in Sampling- 34 Practical Sampling Schemes- 35 Sampling Jitter- 36 Multidimensional Sampling- 37 Problems- 4 Linear Prediction- 41 Introduction- 42 Elementary Estimation Theory- 43 Finite-Memory Linear Prediction- 44 Forward and Backward Prediction- 45 The Levinson-Durbin Algorithm- 46 Linear Predictor Design from Empirical Data- 47 Minimum Delay Property- 48 Predictability and Determinism- 49 Infinite Memory Linear Prediction- 410 Simulation of Random Processes- 411 Problems- II Scalar Coding- 5 Scalar Quantization I- 51 Introduction- 52 Structure of a Quantizer- 53 Measuring Quantizer Performance- 54 The Uniform Quantizer- 55 Nonuniform Quantization and Companding- 56 High Resolution: General Case- 57 Problems- 6 Scalar Quantization II- 61 Introduction- 62 Conditions for Optimality- 63 High Resolution Optimal Companding- 64 Quantizer Design Algorithms- 65 Implementation- 66 Problems- 7 Predictive Quantization- 71 Introduction- 72 Difference Quantization- 73 Closed-Loop Predictive Quantization- 74 Delta Modulation- 75 Problems- 8 Bit Allocation and Transform Coding- 81 Introduction- 82 The Problem of Bit Allocation- 83 Optimal Bit Allocation Results- 84 Integer Constrained Allocation Techniques- 85 Transform Coding- 86 Karhunen-Loeve Transform- 87 Performance Gain of Transform Coding- 88 Other Transforms- 89 Sub-band Coding- 810 Problems- 9 Entropy Coding- 91 Introduction- 92 Variable-Length Scalar Noiseless Coding- 93 Prefix Codes- 94 Huffman Coding- 95 Vector Entropy Coding- 96 Arithmetic Coding- 97 Universal and Adaptive Entropy Coding- 98 Ziv-Lempel Coding- 99 Quantization and Entropy Coding- 910 Problems- III Vector Coding- 10 Vector Quantization I- 101 Introduction- 102 Structural Properties and Characterization- 103 Measuring Vector Quantizer Performance- 104 Nearest Neighbor Quantizers- 105 Lattice Vector Quantizers- 106 High Resolution Distortion Approximations- 107 Problems- 11 Vector Quantization II- 111 Introduction- 112 Optimality Conditions for VQ- 113 Vector Quantizer Design- 114 Design Examples- 115 Problems- 12 Constrained Vector Quantization- 121 Introduction- 122 Complexity and Storage Limitations- 123 Structurally Constrained VQ- 124 Tree-Structured VQ- 125 Classified VQ- 126 Transform VQ- 127 Product Code Techniques- 128 Partitioned VQ- 129 Mean-Removed VQ- 1210 Shape-Gain VQ- 1211 Multistage VQ- 1212 Constrained Storage VQ- 1213 Hierarchical and Multiresolution VQ- 1214 Nonlinear Interpolative VQ- 1215 Lattice Codebook VQ- 1216 Fast Nearest Neighbor Encoding- 1217 Problems- 13 Predictive Vector Quantization- 131 Introduction- 132 Predictive Vector Quantization- 133 Vector Linear Prediction- 134 Predictor Design from Empirical Data- 135 Nonlinear Vector Prediction- 136 Design Examples- 137 Problems- 14 Finite-State Vector Quantization- 141 Recursive Vector Quantizers- 142 Finite-State Vector Quantizers- 143 Labeled-States and Labeled-Transitions- 144 Encoder/Decoder Design- 145 Next-State Function Design- 146 Design Examples- 147 Problems- 15 Tree and Trellis Encoding- 151 Delayed Decision Encoder- 152 Tree and Trellis Coding- 153 Decoder Design- 154 Predictive Trellis Encoders- 155 Other Design Techniques- 156 Problems- 16 Adaptive Vector Quantization- 161 Introduction- 162 Mean Adaptation- 163 Gain-Adaptive Vector Quantization- 164 Switched Codebook Adaptation- 165 Adaptive Bit Allocation- 166 Address VQ- 167 Progressive Code Vector Updating- 168 Adaptive Codebook Generation- 169 Vector Excitation Coding- 1610 Problems- 17 Variable Rate Vector Quantization- 171 Variable Rate Coding- 172 Variable Dimension VQ- 173 Alternative Approaches to Variable Rate VQ- 174 Pruned Tree-Structured VQ- 175 The Generalized BFOS Algorithm- 176 Pruned Tree-Structured VQ- 177 Entropy Coded VQ- 178 Greedy Tree Growing- 179 Design Examples- 1710 Bit Allocation Revisited- 1711 Design Algorithms- 1712 Problems

6,886 citations

••

[...]

TL;DR: The history and scope of remote sensing is described in detail in this paper, where the authors present a detailed overview of the field of Remote Sensing and its application in agriculture, land use and land cover.

Abstract: Preface. Part I: Foundations. History and Scope of Remote Sensing. Electromagentic Radiation. Part II: Image Acquisition. Photographic Sensors. Digital Data. Image Interpretation. Land Observation Satellites. Active Microwave and Lidar. Thermal Radiation. Image Resolution. Part III: Analysis. Preprocessing. Image Classification. Field Data. Accuracy Assessment. Hyperspectral Remote Sensing. Part IV: Applications. Geographic Information Systems. Plant Sciences. Earth Sciences. Hydrospheric Sciences. Land Use and Land Cover. Global Remote Sensing.

3,322 citations

##### Related Papers (5)

[...]

[...]

[...]

[...]

[...]