scispace - formally typeset
Search or ask a question
Book

Digital Communications

01 Jan 1983-
About: The article was published on 1983-01-01 and is currently open access. It has received 25017 citations till now.
Citations
More filters
Patent
21 Jun 1991
TL;DR: In this paper, a system and method for communicating information signals using spread spectrum communication techniques is presented, where PN sequences are constructed that provide orthogonality between the users so that mutual interference will be reduced, allowing higher capacity and better link performance.
Abstract: A system and method for communicating information signals using spread spectrum communication techniques. PN sequences are constructed that provide orthogonality between the users so that mutual interference will be reduced, allowing higher capacity and better link performance. With orthogonal PN codes, the cross-correlation is zero over a predetermined time interval, resulting in no interference between the orthogonal codes, provided only that the code time frames are time aligned with each other. In an exemplary embodiment, signals are communicated between a cell-site and mobile units using direct sequence spread spectrum communication signals. In the cell-to-mobile link, pilot, sync, paging and voice channels are defined. Information communicated on the cell-to-mobile link channels are, in general, encoded, interleaved, bi-phase shift key (BPSK) modulated with orthogonal covering of each BPSK symbol along with quadrature phase shift key (QPSK) spreading of the covered symbols. In the mobile-to-cell link, access and voice channels are defined. Information communicated on the mobile-to-cell link channels are, in general, encoded, interleaved, orthogonal signaling along with QPSK spreading.

1,891 citations

Journal ArticleDOI
TL;DR: A method for the reduction of peak-to-average transmit power ratio of multicarrier modulation systems, called selected mapping, is presented, which is appropriate for a wide range of applications.
Abstract: The authors propose a method for the reduction of peak-to-average transmit power ratio of multicarrier modulation systems, called selected mapping, is presented, which is appropriate for a wide range of applications. Significant gains can be achieved by selected mapping whereas complexity remains quite moderate.

1,812 citations

Journal ArticleDOI
TL;DR: A practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security and is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.
Abstract: This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.

1,759 citations

Journal ArticleDOI
TL;DR: An up-to-date survey on FSO communication systems is presented, describing FSO channel models and transmitter/receiver structures and details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits are provided.
Abstract: Optical wireless communication (OWC) refers to transmission in unguided propagation media through the use of optical carriers, i.e., visible, infrared (IR), and ultraviolet (UV) bands. In this survey, we focus on outdoor terrestrial OWC links which operate in near IR band. These are widely referred to as free space optical (FSO) communication in the literature. FSO systems are used for high rate communication between two fixed points over distances up to several kilometers. In comparison to radio-frequency (RF) counterparts, FSO links have a very high optical bandwidth available, allowing much higher data rates. They are appealing for a wide range of applications such as metropolitan area network (MAN) extension, local area network (LAN)-to-LAN connectivity, fiber back-up, backhaul for wireless cellular networks, disaster recovery, high definition TV and medical image/video transmission, wireless video surveillance/monitoring, and quantum key distribution among others. Despite the major advantages of FSO technology and variety of its application areas, its widespread use has been hampered by its rather disappointing link reliability particularly in long ranges due to atmospheric turbulence-induced fading and sensitivity to weather conditions. In the last five years or so, there has been a surge of interest in FSO research to address these major technical challenges. Several innovative physical layer concepts, originally introduced in the context of RF systems, such as multiple-input multiple-output communication, cooperative diversity, and adaptive transmission have been recently explored for the design of next generation FSO systems. In this paper, we present an up-to-date survey on FSO communication systems. The first part describes FSO channel models and transmitter/receiver structures. In the second part, we provide details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits. Specific topics include advances in modulation, channel coding, spatial/cooperative diversity techniques, adaptive transmission, and hybrid RF/FSO systems.

1,749 citations


Cites background from "Digital Communications"

  • ...An important consideration in FSO channel modeling is the channel coherence bandwidth which is defined as the inverse of the channel delay spread [83]....

    [...]

  • ...In most practical cases, the channel fading is very slowly varying and the channel coherence time is typically 0.1 to 10 ms [44]....

    [...]

Journal ArticleDOI
TL;DR: By partitioning the range of the received signal-to-noise ratio into a finite number of intervals, FSMC models can be constructed for Rayleigh fading channels and the validity and accuracy of the model are confirmed by the state equilibrium equations and computer simulation.
Abstract: The authors first study the behavior of a finite-state channel where a binary symmetric channel is associated with each state and Markov transitions between states are assumed. Such a channel is referred to as a finite-state Markov channel (FSMC). By partitioning the range of the received signal-to-noise ratio into a finite number of intervals, FSMC models can be constructed for Rayleigh fading channels. A theoretical approach is conducted to show the usefulness of FSMCs compared to that of two-state Gilbert-Elliott channels. The crossover probabilities of the binary symmetric channels associated with its states are calculated. The authors use the second-order statistics of the received SNR to approximate the Markov transition probabilities. The validity and accuracy of the model are confirmed by the state equilibrium equations and computer simulation. >

1,742 citations