scispace - formally typeset
Search or ask a question
Posted Content

Digital Image Correlation: From Displacement Measurement to Identification of Elastic Properties - A Review

TL;DR: In this article, a general presentation of the extraction of displacement fields from the knowledge of pictures taken at different instants of an experiment is given, and different strategies can be followed to achieve a sub-pixel uncertainty.
Abstract: The current development of digital image correlation, whose displacement uncertainty is well below the pixel value, enables one to better characterise the behaviour of materials and the response of structures to external loads. A general presentation of the extraction of displacement fields from the knowledge of pictures taken at different instants of an experiment is given. Different strategies can be followed to achieve a sub-pixel uncertainty. From these measurements, new identification procedures are devised making use of full-field measures. A priori or a posteriori routes can be followed. They are illustrated on the analysis of a Brazilian test.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the 2D digital image correlation (2D DIC) technique for displacement field measurement and strain field estimation is presented, and detailed analyses of the measurement accuracy considering the influences of both experimental conditions and algorithm details are provided.
Abstract: As a practical and effective tool for quantitative in-plane deformation measurement of a planar object surface, two-dimensional digital image correlation (2D DIC) is now widely accepted and commonly used in the field of experimental mechanics. It directly provides full-field displacements to sub-pixel accuracy and full-field strains by comparing the digital images of a test object surface acquired before and after deformation. In this review, methodologies of the 2D DIC technique for displacement field measurement and strain field estimation are systematically reviewed and discussed. Detailed analyses of the measurement accuracy considering the influences of both experimental conditions and algorithm details are provided. Measures for achieving high accuracy deformation measurement using the 2D DIC technique are also recommended. Since microscale and nanoscale deformation measurement can easily be realized by combining the 2D DIC technique with high-spatial-resolution microscopes, the 2D DIC technique should find more applications in broad areas.

2,530 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight than conventional attenuation based tomography.
Abstract: X-ray computer tomography (CT) is fast becoming an accepted tool within the materials science community for the acquisition of 3D images. Here the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one. Our review considers first the image acquisition process, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight (e.g. fast and high resolution imaging, crystallite (grain) imaging) than conventional attenuation based tomography. Methods and shortcomings of CT are examined for the quantification of 3D volumetric data to extract key topological parameters such as phase fractions, phase contiguity, and damage levels as well as density variations. As a non-destructive technique, CT is an ideal means of following structural development over time via time lapse sequences of 3D images (sometimes called 3D movies or 4D imaging). This includes information nee...

1,009 citations

Journal ArticleDOI
TL;DR: In this article, a new methodology is proposed to estimate displacement fields from pairs of images (reference and strained) that evaluates continuous displacement fields, specialized to a finite-element decomposition.
Abstract: A new methodology is proposed to estimate displacement fields from pairs of images (reference and strained) that evaluates continuous displacement fields. This approach is specialized to a finite-element decomposition, therefore providing a natural interface with a numerical modeling of the mechanical behavior used for identification purposes. The method is illustrated with the analysis of Portevin–Le Châtelier bands in an aluminum alloy sample subjected to a tensile test. A significant progress with respect to classical digital image correlation techniques is observed in terms of spatial resolution and uncertainty.

654 citations

Journal ArticleDOI
TL;DR: In this article, the authors present several methods for constitutive parameter identification based on kinematic full-field measurements, namely the finite element model updating method (FEMU), the constitutive equation gap method (CEGM), the virtual fields method (VFM), the EGM, the equilibrium gap method, and the reciprocity gap method.
Abstract: This article reviews recently developed methods for constitutive parameter identification based on kinematic full-field measurements, namely the finite element model updating method (FEMU), the constitutive equation gap method (CEGM), the virtual fields method (VFM), the equilibrium gap method (EGM) and the reciprocity gap method (RGM) Their formulation and underlying principles are presented and discussed These identification techniques are then applied to full-field experimental data obtained on four different experiments, namely (i) a tensile test, (ii) the Brazilian test, (iii) a shear-flexural test, and (iv) a biaxial test Test (iv) features a non-uniform damage field, and hence non-uniform equivalent elastic properties, while tests (i), (ii) and (iii) deal with the identification of uniform anisotropic elastic properties Tests (ii), (iii) and (iv) involve non-uniform strain fields in the region of interest

645 citations

Journal ArticleDOI
TL;DR: A methodology is proposed to assess the metrological performances of the image processing algorithms that constitute their main component, the knowledge of which being required for a global assessment of the whole measurement system.
Abstract: Optical full-field measurement methods such as Digital Image Correlation (DIC) are increasingly used in the field of experimental mechanics, but they still suffer from a lack of information about their metrological performances. To assess the performance of DIC techniques and give some practical rules for users, a collaborative work has been carried out by the Workgroup "Metrology" of the French CNRS research network 2519 "MCIMS (Mesures de Champs et Identification en Mecanique des Solides / Full-field measurement and identification in solid mechanics, http://www.ifma.fr/lami/gdr2519)". A methodology is proposed to assess the metrological performances of the image processing algorithms that constitute their main component, the knowledge of which being required for a global assessment of the whole measurement system. The study is based on displacement error assessment from synthetic speckle images. Series of synthetic reference and deformed images with random patterns have been generated, assuming a sinusoidal displacement field with various frequencies and amplitudes. Displacements are evaluated by several DIC packages based on various formulations and used in the French community. Evaluated displacements are compared with the exact imposed values and errors are statistically analyzed. Results show general trends rather independent of the implementations but strongly correlated with the assumptions of the underlying algorithms. Various error regimes are identified, for which the dependence of the uncertainty with the parameters of the algorithms, such as subset size, gray level interpolation or shape functions, is discussed.

575 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.

10,727 citations

Proceedings ArticleDOI
12 Nov 1981
TL;DR: In this article, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.
Abstract: Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. An iterative implementation is shown which successfully computes the optical flow for a number of synthetic image sequences. The algorithm is robust in that it can handle image sequences that are quantized rather coarsely in space and time. It is also insensitive to quantization of brightness levels and additive noise. Examples are included where the assumption of smoothness is violated at singular points or along lines in the image.

8,078 citations

BookDOI
28 Jan 2005

3,600 citations