scispace - formally typeset
Search or ask a question
Book

Digital Watermarking and Steganography

TL;DR: This new edition now contains essential information on steganalysis and steganography, and digital watermark embedding is given a complete update with new processes and applications.
Abstract: Digital audio, video, images, and documents are flying through cyberspace to their respective owners. Unfortunately, along the way, individuals may choose to intervene and take this content for themselves. Digital watermarking and steganography technology greatly reduces the instances of this by limiting or eliminating the ability of third parties to decipher the content that he has taken. The many techiniques of digital watermarking (embedding a code) and steganography (hiding information) continue to evolve as applications that necessitate them do the same. The authors of this second edition provide an update on the framework for applying these techniques that they provided researchers and professionals in the first well-received edition. Steganography and steganalysis (the art of detecting hidden information) have been added to a robust treatment of digital watermarking, as many in each field research and deal with the other. New material includes watermarking with side information, QIM, and dirty-paper codes. The revision and inclusion of new material by these influential authors has created a must-own book for anyone in this profession. *This new edition now contains essential information on steganalysis and steganography *New concepts and new applications including QIM introduced *Digital watermark embedding is given a complete update with new processes and applications
Citations
More filters
Book
12 Nov 2009
TL;DR: This clear, self-contained guide shows you how to understand the building blocks of covert communication in digital media files and how to apply the techniques in practice, including those of steganalysis, the detection of Steganography.
Abstract: Steganography, the art of hiding of information in apparently innocuous objects or images, is a field with a rich heritage, and an area of rapid current development. This clear, self-contained guide shows you how to understand the building blocks of covert communication in digital media files and how to apply the techniques in practice, including those of steganalysis, the detection of steganography. Assuming only a basic knowledge in calculus and statistics, the book blends the various strands of steganography, including information theory, coding, signal estimation and detection, and statistical signal processing. Experiments on real media files demonstrate the performance of the techniques in real life, and most techniques are supplied with pseudo-code, making it easy to implement the algorithms. The book is ideal for students taking courses on steganography and information hiding, and is also a useful reference for engineers and practitioners working in media security and information assurance.

616 citations

Journal ArticleDOI
TL;DR: The PEE technique is further investigated and an efficient reversible watermarking scheme is proposed, by incorporating in PEE two new strategies, namely, adaptive embedding and pixel selection, which outperforms conventional PEE.
Abstract: Prediction-error expansion (PEE) is an important technique of reversible watermarking which can embed large payloads into digital images with low distortion. In this paper, the PEE technique is further investigated and an efficient reversible watermarking scheme is proposed, by incorporating in PEE two new strategies, namely, adaptive embedding and pixel selection. Unlike conventional PEE which embeds data uniformly, we propose to adaptively embed 1 or 2 bits into expandable pixel according to the local complexity. This avoids expanding pixels with large prediction-errors, and thus, it reduces embedding impact by decreasing the maximum modification to pixel values. Meanwhile, adaptive PEE allows very large payload in a single embedding pass, and it improves the capacity limit of conventional PEE. We also propose to select pixels of smooth area for data embedding and leave rough pixels unchanged. In this way, compared with conventional PEE, a more sharply distributed prediction-error histogram is obtained and a better visual quality of watermarked image is observed. With these improvements, our method outperforms conventional PEE. Its superiority over other state-of-the-art methods is also demonstrated experimentally.

530 citations


Cites background from "Digital Watermarking and Steganogra..."

  • ...Efficient Reversible Watermarking Based on Adaptive Prediction-Error Expansion and Pixel Selection Xiaolong Li, Bin Yang, and Tieyong Zeng Abstract—Prediction-error expansion (PEE) is an important technique of reversible watermarking which can embed large payloads into digital images with low distortion....

    [...]

  • ...…Reversible Watermarking Based on Adaptive Prediction-Error Expansion and Pixel Selection Xiaolong Li, Bin Yang, and Tieyong Zeng Abstract—Prediction-error expansion (PEE) is an important technique of reversible watermarking which can embed large payloads into digital images with low…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the various RDH algorithms and researches have been classified into the following six categories: 1) RDH into image spatial domain; 2) RD h into image compressed domain (e.g., JPEG); 3) RDh suitable for image semi-fragile authentication; 4)RDH with image contrast enhancement; 5) RD H into encrypted images, which is expected to have wide application in the cloud computation; and 6) RDD into video and into audio.
Abstract: In the past two decades, reversible data hiding (RDH), also referred to as lossless or invertible data hiding, has gradually become a very active research area in the field of data hiding. This has been verified by more and more papers on increasingly wide-spread subjects in the field of RDH research that have been published these days. In this paper, the various RDH algorithms and researches have been classified into the following six categories: 1) RDH into image spatial domain; 2) RDH into image compressed domain (e.g., JPEG); 3) RDH suitable for image semi-fragile authentication; 4) RDH with image contrast enhancement; 5) RDH into encrypted images, which is expected to have wide application in the cloud computation; and 6) RDH into video and into audio. For each of these six categories, the history of technical developments, the current state of the arts, and the possible future researches are presented and discussed. It is expected that the RDH technology and its applications in the real word will continue to move ahead.

432 citations


Cites background from "Digital Watermarking and Steganogra..."

  • ...Data hiding has received much attention from the research community in the past more than two decades [1], [2]....

    [...]

Proceedings ArticleDOI
Jialong Zhang1, Zhongshu Gu1, Jiyong Jang1, Hui Wu1, Marc Ph. Stoecklin1, Heqing Huang1, Ian M. Molloy1 
29 May 2018
TL;DR: By extending the intrinsic generalization and memorization capabilities of deep neural networks, the models to learn specially crafted watermarks at training and activate with pre-specified predictions when observing the watermark patterns at inference, this paper generalizes the "digital watermarking'' concept from multimedia ownership verification to deep neural network (DNN) models.
Abstract: Deep learning technologies, which are the key components of state-of-the-art Artificial Intelligence (AI) services, have shown great success in providing human-level capabilities for a variety of tasks, such as visual analysis, speech recognition, and natural language processing and etc. Building a production-level deep learning model is a non-trivial task, which requires a large amount of training data, powerful computing resources, and human expertises. Therefore, illegitimate reproducing, distribution, and the derivation of proprietary deep learning models can lead to copyright infringement and economic harm to model creators. Therefore, it is essential to devise a technique to protect the intellectual property of deep learning models and enable external verification of the model ownership. In this paper, we generalize the "digital watermarking'' concept from multimedia ownership verification to deep neural network (DNNs) models. We investigate three DNN-applicable watermark generation algorithms, propose a watermark implanting approach to infuse watermark into deep learning models, and design a remote verification mechanism to determine the model ownership. By extending the intrinsic generalization and memorization capabilities of deep neural networks, we enable the models to learn specially crafted watermarks at training and activate with pre-specified predictions when observing the watermark patterns at inference. We evaluate our approach with two image recognition benchmark datasets. Our framework accurately (100%) and quickly verifies the ownership of all the remotely deployed deep learning models without affecting the model accuracy for normal input data. In addition, the embedded watermarks in DNN models are robust and resilient to different counter-watermark mechanisms, such as fine-tuning, parameter pruning, and model inversion attacks.

405 citations


Cites methods from "Digital Watermarking and Steganogra..."

  • ...In this section, we evaluate the performance of our watermarking framework with the standard from digital watermarking image domain [14, 23] and neural network domain [54]....

    [...]

Proceedings ArticleDOI
06 Jun 2017
TL;DR: This work proposes to use digital watermarking technology to protect intellectual property and detect intellectual property infringement in the use of trained models, and proposes a general framework for embedding a watermark in model parameters, using a parameter regularizer.
Abstract: Significant progress has been made with deep neural networks recently. Sharing trained models of deep neural networks has been a very important in the rapid progress of research and development of these systems. At the same time, it is necessary to protect the rights to shared trained models. To this end, we propose to use digital watermarking technology to protect intellectual property and detect intellectual property infringement in the use of trained models. First, we formulate a new problem: embedding watermarks into deep neural networks. Second, we propose a general framework for embedding a watermark in model parameters, using a parameter regularizer. Our approach does not impair the performance of networks into which a watermark is placed because the watermark is embedded while training the host network. Finally, we perform comprehensive experiments to reveal the potential of watermarking deep neural networks as the basis of this new research effort. We show that our framework can embed a watermark during the training of a deep neural network from scratch, and during fine-tuning and distilling, without impairing its performance. The embedded watermark does not disappear even after fine-tuning or parameter pruning; the watermark remains complete even after 65% of parameters are pruned.

302 citations


Cites background from "Digital Watermarking and Steganogra..."

  • ...ons, and (3) expected attack types against which embedded watermarks should be robust. 2.1. Requirements Table 1 summarizes the requirements for an effective watermarking algorithm in an image domain [15, 8] and a neural network domain. While both domains share almost the same requirements, fidelity and robustness are different in image and neural network domains. For fidelity in an image domain, it is ess...

    [...]

References
More filters
Book
Vladimir Vapnik1
01 Jan 1995
TL;DR: Setting of the learning problem consistency of learning processes bounds on the rate of convergence ofLearning processes controlling the generalization ability of learning process constructing learning algorithms what is important in learning theory?
Abstract: Setting of the learning problem consistency of learning processes bounds on the rate of convergence of learning processes controlling the generalization ability of learning processes constructing learning algorithms what is important in learning theory?.

40,147 citations

Journal ArticleDOI
TL;DR: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key.
Abstract: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented recipient. Only he can decipher the message, since only he knows the corresponding decryption key. (2) A message can be “signed” using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in “electronic mail” and “electronic funds transfer” systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two large secret primer numbers p and q. Decryption is similar; only a different, secret, power d is used, where e * d ≡ 1(mod (p - 1) * (q - 1)). The security of the system rests in part on the difficulty of factoring the published divisor, n.

14,659 citations

Proceedings Article
24 Aug 1981
TL;DR: In this paper, the spatial intensity gradient of the images is used to find a good match using a type of Newton-Raphson iteration, which can be generalized to handle rotation, scaling and shearing.
Abstract: Image registration finds a variety of applications in computer vision. Unfortunately, traditional image registration techniques tend to be costly. We present a new image registration technique that makes use of the spatial intensity gradient of the images to find a good match using a type of Newton-Raphson iteration. Our technique is taster because it examines far fewer potential matches between the images than existing techniques Furthermore, this registration technique can be generalized to handle rotation, scaling and shearing. We show how our technique can be adapted tor use in a stereo vision system.

12,944 citations

Book
01 Jan 1966
TL;DR: This book discusses statistical decision theory and sensory processes in signal detection theory and psychophysics and describes how these processes affect decision-making.
Abstract: Book on statistical decision theory and sensory processes in signal detection theory and psychophysics

11,820 citations

Journal ArticleDOI
TL;DR: A theory of secrecy systems is developed on a theoretical level and is intended to complement the treatment found in standard works on cryptography.
Abstract: THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.1 In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.2 There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.

8,777 citations