scispace - formally typeset
Open AccessProceedings ArticleDOI

Dilated Residual Networks

Reads0
Chats0
TLDR
In this paper, dilated residual networks (DRNs) outperform their non-dilated counterparts in image classification without increasing the models depth or complexity, and an approach to remove gridding artifacts introduced by dilation is proposed.
Abstract
Convolutional networks for image classification progressively reduce resolution until the image is represented by tiny feature maps in which the spatial structure of the scene is no longer discernible. Such loss of spatial acuity can limit image classification accuracy and complicate the transfer of the model to downstream applications that require detailed scene understanding. These problems can be alleviated by dilation, which increases the resolution of output feature maps without reducing the receptive field of individual neurons. We show that dilated residual networks (DRNs) outperform their non-dilated counterparts in image classification without increasing the models depth or complexity. We then study gridding artifacts introduced by dilation, develop an approach to removing these artifacts (degridding), and show that this further increases the performance of DRNs. In addition, we show that the accuracy advantage of DRNs is further magnified in downstream applications such as object localization and semantic segmentation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Deformable Convolutional Networks

TL;DR: Deformable convolutional networks as discussed by the authors augment the spatial sampling locations in the modules with additional offsets and learn the offsets from the target tasks, without additional supervision, which can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard backpropagation.
Journal ArticleDOI

Deep Learning for Generic Object Detection: A Survey

TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Proceedings ArticleDOI

Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

TL;DR: MCD-DA as discussed by the authors aligns distributions of source and target by utilizing the task-specific decision boundaries between classes to detect target samples that are far from the support of the source.
Proceedings ArticleDOI

Selective Kernel Networks

TL;DR: SKNet as discussed by the authors proposes a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information, which can capture target objects with different scales.
Proceedings ArticleDOI

Context Encoding for Semantic Segmentation

TL;DR: The proposed Context Encoding Module significantly improves semantic segmentation results with only marginal extra computation cost over FCN, and can improve the feature representation of relatively shallow networks for the image classification on CIFAR-10 dataset.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.