scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dipole blockade and quantum information processing in mesoscopic atomic ensembles.

26 Jun 2001-Physical Review Letters (The American Physical Society)-Vol. 87, Iss: 3, pp 037901-037901
TL;DR: A technique for manipulating quantum information stored in collective states of mesoscopic ensembles by optical excitation into states with strong dipole-dipole interactions that can be employed for controlled generation of collective atomic spin states as well as nonclassical photonic states and for scalable quantum logic gates is described.
Abstract: We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting "dipole blockade" can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as nonclassical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments.
Abstract: Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

4,218 citations

Journal ArticleDOI
TL;DR: Rydberg atoms with principal quantum number $n⪢1$ have exaggerated atomic properties including dipole-dipole interactions that scale as ${n}^{4}$ and radiative lifetimes that scale at least{n}−3}$ as mentioned in this paper, and it was proposed a decade ago to implement quantum gates between neutral atom qubits.
Abstract: Rydberg atoms with principal quantum number $n⪢1$ have exaggerated atomic properties including dipole-dipole interactions that scale as ${n}^{4}$ and radiative lifetimes that scale as ${n}^{3}$. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing.

2,156 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent developments in the physics of ultracold atomic and molecular gases in optical lattices and show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics.
Abstract: We review recent developments in the physics of ultracold atomic and molecular gases in optical lattices. Such systems are nearly perfect realisations of various kinds of Hubbard models, and as such may very well serve to mimic condensed matter phenomena. We show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics. After a short presentation of the models and the methods of treatment of such systems, we discuss in detail, which challenges of condensed matter physics can be addressed with (i) disordered ultracold lattice gases, (ii) frustrated ultracold gases, (iii) spinor lattice gases, (iv) lattice gases in “artificial” magnetic fields, and, last but not least, (v) quantum information processing in lattice gases. For completeness, also some recent progress related to the above topics with trapped cold gases will be discussed. Motto: There are more things in heaven and earth, Horatio, Than are dreamt of in your...

1,535 citations

Journal ArticleDOI
TL;DR: A review of the current state of the art in the research field of cold and ultracold molecules can be found in this paper, where a discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in rapidly expanding research field.
Abstract: This paper presents a review of the current state of the art in the research field of cold and ultracold molecules. It serves as an introduction to the focus issue of New Journal of Physics on Cold and Ultracold Molecules and describes new prospects for fundamental research and technological development. Cold and ultracold molecules may revolutionize physical chemistry and few-body physics, provide techniques for probing new states of quantum matter, allow for precision measurements of both fundamental and applied interest, and enable quantum simulations of condensed-matter phenomena. Ultracold molecules offer promising applications such as new platforms for quantum computing, precise control of molecular dynamics, nanolithography and Bose-enhanced chemistry. The discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in this rapidly expanding research field.

1,228 citations


Cites background from "Dipole blockade and quantum informa..."

  • ...One possible source of nonlinearity is the ‘dipole blockade’ [461]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the interaction of light with multiatom ensembles has attracted much attention as a basic building block for quantum information processing and quantum state engineering, and the authors provide a common theoretical frame for these processes, describes basic experimental techniques and media used for quantum interfaces, and reviews several key experiments on quantum memory for light, quantum entanglement between atomic enambles and light, and quantum teleportation with atomic enassembles.
Abstract: During the past decade the interaction of light with multiatom ensembles has attracted much attention as a basic building block for quantum information processing and quantum state engineering. The field started with the realization that optically thick free space ensembles can be efficiently interfaced with quantum optical fields. By now the atomic ensemble-light interfaces have become a powerful alternative to the cavity-enhanced interaction of light with single atoms. Various mechanisms used for the quantum interface are discussed, including quantum nondemolition or Faraday interaction, quantum measurement and feedback, Raman interaction, photon echo, and electromagnetically induced transparency. This review provides a common theoretical frame for these processes, describes basic experimental techniques and media used for quantum interfaces, and reviews several key experiments on quantum memory for light, quantum entanglement between atomic ensembles and light, and quantum teleportation with atomic ensembles. The two types of quantum measurements which are most important for the interface are discussed: homodyne detection and photon counting. This review concludes with an outlook on the future of atomic ensembles as an enabling technology in quantum information processing.

1,109 citations


Cites background from "Dipole blockade and quantum informa..."

  • ...…to use the collisional interactions of atoms in optical lattices (Muschik et al., 2008) or the so called Rydberg blockade, where the excitation of a single atom to a Rydberg level blocks the excitation of other atoms, and therefore creates a uniform long distance interaction (Lukin et al., 2001)....

    [...]

References
More filters
Book
01 Jan 1991
TL;DR: In this article, the authors present a model for the distribution of mesoscopic fluctuations and relaxation processes in disordered conductors, which is based on random matrix theory and maximum entropy models.
Abstract: Preface. 1. Aharonov-Bohm effects in loops of gold (S. Washburn). 2. Mesoscopic fluctuations of current density in disordered conductors (B.Z. Spivak and A.Yu. Zyuzin). 3. Interference, fluctuations and correlations in the diffusive scattering of light from a disordered medium (M.J. Stephen). 4. Conductance fluctuations and 1/f noise magnitudes in small disordered structures: theory (S. Feng). 5. Conductance fluctuations and low-frequency noise in small disordered systems: experiment (N. Giordano). 6. Single electronics: A correlated transfer of single electrons and Cooper pairs in systems of small tunnel junctions (D.V. Averin and K.K. Likharev). 7. Ballistic transport in one dimension (G. Timp). 8. Transmittancy fluctuations in randomly non-uniform barriers and incoherent mesoscopics (M.E. Raikh and I.M. Ruzin). 9. Random matrix theory and maximum entropy models for disordered conductors (A.D. Stone et al). 10. Distribution of mesoscopic fluctuations and relaxation processes in disordered conductors (B.L. Altshuler, V.E. Kravtsov and I.V. Lerner). Author index. Subject index. Cumulative index.

1,339 citations


"Dipole blockade and quantum informa..." refers background in this paper

  • ...The resulting “dipole blockade” phenomenon closely resembles similar mesoscopic effects in nanoscale solid-state devices [6]....

    [...]