scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Direct 4D printing via active composite materials

01 Apr 2017-Science Advances (American Association for the Advancement of Science)-Vol. 3, Iss: 4
TL;DR: The markedly simplified creation of high-resolution complex 3D reprogrammable structures promises to enable myriad applications across domains, including medical technology, aerospace, and consumer products, and even suggests a new paradigm in product design, where components are simultaneously designed to inhabit multiple configurations during service.
Abstract: We describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a glassy shape memory polymer and an elastomer that is programmed with a built-in compressive strain during photopolymerization. Upon heating, the shape memory polymer softens, releases the constraint on the strained elastomer, and allows the object to transform into a new permanent shape, which can then be reprogrammed into multiple subsequent shapes. Our key advance, the markedly simplified creation of high-resolution complex 3D reprogrammable structures, promises to enable myriad applications across domains, including medical technology, aerospace, and consumer products, and even suggests a new paradigm in product design, where components are simultaneously designed to inhabit multiple configurations during service.
Citations
More filters
Journal ArticleDOI
01 Jun 2018-Nature
TL;DR: 3D printing of programmed ferromagnetic domains in soft materials that enable fast transformations between complex 3D shapes via magnetic actuation are reported, enabling a set of previously inaccessible modes of transformation, such as remotely controlled auxetic behaviours of mechanical metamaterials with negative Poisson’s ratios.
Abstract: Soft materials capable of transforming between three-dimensional (3D) shapes in response to stimuli such as light, heat, solvent, electric and magnetic fields have applications in diverse areas such as flexible electronics1,2, soft robotics3,4 and biomedicine5–7. In particular, magnetic fields offer a safe and effective manipulation method for biomedical applications, which typically require remote actuation in enclosed and confined spaces8–10. With advances in magnetic field control 11 , magnetically responsive soft materials have also evolved from embedding discrete magnets 12 or incorporating magnetic particles 13 into soft compounds to generating nonuniform magnetization profiles in polymeric sheets14,15. Here we report 3D printing of programmed ferromagnetic domains in soft materials that enable fast transformations between complex 3D shapes via magnetic actuation. Our approach is based on direct ink writing 16 of an elastomer composite containing ferromagnetic microparticles. By applying a magnetic field to the dispensing nozzle while printing 17 , we reorient particles along the applied field to impart patterned magnetic polarity to printed filaments. This method allows us to program ferromagnetic domains in complex 3D-printed soft materials, enabling a set of previously inaccessible modes of transformation, such as remotely controlled auxetic behaviours of mechanical metamaterials with negative Poisson’s ratios. The actuation speed and power density of our printed soft materials with programmed ferromagnetic domains are orders of magnitude greater than existing 3D-printed active materials. We further demonstrate diverse functions derived from complex shape changes, including reconfigurable soft electronics, a mechanical metamaterial that can jump and a soft robot that crawls, rolls, catches fast-moving objects and transports a pharmaceutical dose.

1,246 citations

Journal ArticleDOI
TL;DR: This review provides a brief overview of current progress in existing biomaterials and tissue engineering scaffolds prepared by 3D printing technologies, with an emphasis on the material selection, scaffold design optimization, and their preclinical and clinical applications in the repair of critical-sized bone defects.

469 citations

Journal ArticleDOI
TL;DR: A novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomers via UV-light-assisted direct-ink-write printing is reported and it is demonstrated that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices.
Abstract: The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D pr...

348 citations

Journal ArticleDOI
TL;DR: The focus here is on photopolymerization-based additive manufacturing including the recent development of new methods, novel monomers, and photoinitiators, which result in previously inaccessible applications such as complex ceramic structures, embedded electronics, and responsive 3D objects.
Abstract: The field of 3D printing, also known as additive manufacturing (AM), is developing rapidly in both academic and industrial research environments. New materials and printing technologies, which enable rapid and multimaterial printing, have given rise to new applications and utilizations. However, the main bottleneck for achieving many more applications is the lack of materials with new physical properties. Here, some of the recent reports on novel materials in this field, such as ceramics, glass, shape-memory polymers, and electronics, are reviewed. Although new materials have been reported for all three main printing approaches-fused deposition modeling, binder jetting or laser sintering/melting, and photopolymerization-based approaches, apparently, most of the novel physicochemical properties are associated with materials printed by photopolymerization approaches. Furthermore, the high resolution that can be achieved using this type of 3D printing, together with the new properties, has resulted in new implementations such as microfluidic, biomedical devices, and soft robotics. Therefore, the focus here is on photopolymerization-based additive manufacturing including the recent development of new methods, novel monomers, and photoinitiators, which result in previously inaccessible applications such as complex ceramic structures, embedded electronics, and responsive 3D objects.

314 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a plant-inspired shape morphing system is presented, where a composite hydrogel architecture is encoded with localized, anisotropic swelling behavior controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways.
Abstract: Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

2,122 citations

Journal ArticleDOI
TL;DR: Shape-memory polymers as discussed by the authors are an emerging class of active polymers that can change their shape in a predefined way from shape A to shape B when exposed to an appropriate stimulus.

1,575 citations

Journal ArticleDOI
25 Aug 2016-Nature
TL;DR: An untethered operation of a robot composed solely of soft materials that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply is reported.
Abstract: An untethered, entirely soft robot is designed to operate autonomously by combining microfluidic logic and hydrogen peroxide as an on-board fuel supply. Soft robotics have so far necessarily included some 'hard' or metallic elements, in particular in the form of batteries or wiring, to connect them to an external power source. Additionally, external wiring tethering them to a power source places limits on the autonomy of such robots. Now Jennifer Lewis and colleagues have combined a 3D-printed soft polymeric robot with microfluidic logic and hydrogen peroxide as an onboard fuel to produce an eight-armed robot — an 'octobot' — that actuates its arms, without the incorporation of any hard structures. The hydrogen peroxide decomposes in the presence of a platinum catalyst to produce oxygen and a volumetric expansion that fills bladders embedded within the arms of the octobot. The design of the fuel reservoirs, microfluidic channels and vents to release the gas means that two sets of arms actuate cyclically. Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials1,2. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources3,4,5,6,7,8,9,10. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic11 that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation12. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique13,14. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

1,491 citations

Journal ArticleDOI
Tao Xie1
11 Mar 2010-Nature
TL;DR: It is shown that the perfluorosulphonic acid ionomer (PFSA), which has only one broad reversible phase transition, exhibits dual-, triple-, and at least quadruple-shape memory effects, all highly tunable without any change to the material composition.
Abstract: Shape memory polymers are materials that can memorize temporary shapes and revert to their permanent shape upon exposure to an external stimulus such as heat, light, moisture or magnetic field. Such properties have enabled a variety of applications including deployable space structures, biomedical devices, adaptive optical devices, smart dry adhesives and fasteners. The ultimate potential for a shape memory polymer, however, is limited by the number of temporary shapes it can memorize in each shape memory cycle and the ability to tune the shape memory transition temperature(s) for the targeted applications. Currently known shape memory polymers are capable of memorizing one or two temporary shapes, corresponding to dual- and triple-shape memory effects (also counting the permanent shape), respectively. At the molecular level, the maximum number of temporary shapes a shape memory polymer can memorize correlates directly to the number of discrete reversible phase transitions (shape memory transitions) in the polymer. Intuitively, one might deduce that multi-shape memory effects are achievable simply by introducing additional reversible phase transitions. The task of synthesizing a polymer with more than two distinctive and strongly bonded reversible phases, however, is extremely challenging. Tuning shape memory effects, on the other hand, is often achieved through tailoring the shape memory transition temperatures, which requires alteration in the material composition. Here I show that the perfluorosulphonic acid ionomer (PFSA), which has only one broad reversible phase transition, exhibits dual-, triple-, and at least quadruple-shape memory effects, all highly tunable without any change to the material composition.

1,162 citations

Journal ArticleDOI
TL;DR: Progress in new shape memory enabling mechanisms and triggering methods, variations of in shape memory forms (shape memory surfaces, hydrogels, and microparticles), newshape memory behavior (multi-SME and two-way-S ME), and novel fabrication methods are reviewed.

1,020 citations