scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Direct recordings of grid-like neuronal activity in human spatial navigation

TL;DR: Recording neuronal activity from neurosurgical patients performing a virtual-navigation task, it is identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes.
Abstract: Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats and monkeys, are believed to support a wide range of spatial behaviors. Recording neuronal activity from neurosurgical patients performing a virtual-navigation task, we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes.
Citations
More filters
Journal ArticleDOI
17 Jun 2016-Science
TL;DR: These findings suggest that global relational codes may be used to organize nonspatial conceptual representations and that these codes may have a hexagonal gridlike pattern when conceptual knowledge is laid out in two continuous dimensions.
Abstract: It has been hypothesized that the brain organizes concepts into a mental map, allowing conceptual relationships to be navigated in a manner similar to that of space. Grid cells use a hexagonally symmetric code to organize spatial representations and are the likely source of a precise hexagonal symmetry in the functional magnetic resonance imaging signal. Humans navigating conceptual two-dimensional knowledge showed the same hexagonal signal in a set of brain regions markedly similar to those activated during spatial navigation. This gridlike signal is consistent across sessions acquired within an hour and more than a week apart. Our findings suggest that global relational codes may be used to organize nonspatial conceptual representations and that these codes may have a hexagonal gridlike pattern when conceptual knowledge is laid out in two continuous dimensions.

575 citations

Journal ArticleDOI
24 Oct 2018-Neuron
TL;DR: Experimental evidence and theoretical frameworks that point to principles unifying how to learn and use abstract, generalizable knowledge are reviewed and it is suggested that map-like representations observed in a spatial context may be an instance of general coding mechanisms capable of organizing knowledge of all kinds.

539 citations

Journal ArticleDOI
TL;DR: Recent studies indicate that the human hippocampus and entorhinal cortex support map-like spatial codes, and posterior brain regions such as parahippocampal and retrosplenial cortices provide critical inputs that allow cognitive maps to be anchored to fixed environmental landmarks.
Abstract: The 'cognitive map' hypothesis proposes that brain builds a unified representation of the spatial environment to support memory and guide future action. Forty years of electrophysiological research in rodents suggest that cognitive maps are neurally instantiated by place, grid, border and head direction cells in the hippocampal formation and related structures. Here we review recent work that suggests a similar functional organization in the human brain and yields insights into how cognitive maps are used during spatial navigation. Specifically, these studies indicate that (i) the human hippocampus and entorhinal cortex support map-like spatial codes, (ii) posterior brain regions such as parahippocampal and retrosplenial cortices provide critical inputs that allow cognitive maps to be anchored to fixed environmental landmarks, and (iii) hippocampal and entorhinal spatial codes are used in conjunction with frontal lobe mechanisms to plan routes during navigation. We also discuss how these three basic elements of cognitive map based navigation-spatial coding, landmark anchoring and route planning-might be applied to nonspatial domains to provide the building blocks for many core elements of human thought.

494 citations

Journal ArticleDOI
TL;DR: It is argued that the neuroscience of spatial cognition is emerging as an exceptionally integrative field which provides an ideal test-bed for theories linking neural coding, learning, memory and cognition.
Abstract: Over the past four decades, research has revealed that cells in the hippocampal formation provide an exquisitely detailed representation of an animal's current location and heading. These findings have provided the foundations for a growing understanding of the mechanisms of spatial cognition in mammals, including humans. We describe the key properties of the major categories of spatial cells: place cells, head direction cells, grid cells and boundary cells, each of which has a characteristic firing pattern that encodes spatial parameters relating to the animal's current position and orientation. These properties also include the theta oscillation, which appears to play a functional role in the representation and processing of spatial information. Reviewing recent work, we identify some themes of current research and introduce approaches to computational modelling that have helped to bridge the different levels of description at which these mechanisms have been investigated. These range from the level of molecular biology and genetics to the behaviour and brain activity of entire organisms. We argue that the neuroscience of spatial cognition is emerging as an exceptionally integrative field which provides an ideal test-bed for theories linking neural coding, learning, memory and cognition.

422 citations

Journal ArticleDOI
TL;DR: The mechanisms for pattern completion and pattern separation are described in the context of a theory of hippocampal function in which the hippocampal CA3 system operates as a single attractor or autoassociation network to enable rapid, one-trial, associations between any spatial location and an object or reward.
Abstract: The mechanisms for pattern completion and pattern separation are described in the context of a theory of hippocampal function in which the hippocampal CA3 system operates as a single attractor or autoassociation network to enable rapid, one-trial, associations between any spatial location (place in rodents, or spatial view in primates) and an object or reward, and to provide for completion of the whole memory during recall from any part. The factors important in the pattern completion in CA3 together with a large number of independent memories stored in CA3 include a sparse distributed representation which is enhanced by the graded firing rates of CA3 neurons, representations that are independent due to the randomizing effect of the mossy fibers, heterosynaptic long-term depression as well as long-term potentiation in the recurrent collateral synapses, and diluted connectivity to minimize the number of multiple synapses between any pair of CA3 neurons which otherwise distort the basins of attraction. Recall of information from CA3 is implemented by the entorhinal cortex perforant path synapses to CA3 cells, which in acting as a pattern associator allow some pattern generalization. Pattern separation is performed in the dentate granule cells using competitive learning to convert grid-like entorhinal cortex firing to place-like fields. Pattern separation in CA3, which is important for completion of any one of the stored patterns from a fragment, is provided for by the randomizing effect of the mossy fiber synapses to which neurogenesis may contribute, by the large number of dentate granule cells each with a sparse representation, and by the sparse independent representations in CA3. Recall to the neocortex is achieved by a reverse hierarchical series of pattern association networks implemented by the hippocampo-cortical backprojections, each one of which performs some pattern generalization, to retrieve a complete pattern of cortical firing in higher-order cortical areas.

373 citations


Cites background from "Direct recordings of grid-like neur..."

  • ...Further support for this type of representation of space being viewed “out there” rather than where one is located as for rat place cells is that cells in the human entorhinal cortex with spatial view grid-like properties have now been described (Jacobs et al., 2013)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Preliminary observations on the behaviour of hippocampusal units in the freely moving rat provide support for this theory of hippocampal function.

5,549 citations

Journal ArticleDOI
TL;DR: It is shown that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM, providing an “alternative self” mechanism for MHC class I inhibition.
Abstract: NK cell cytotoxicity is controlled by numerous NK inhibitory and activating receptors. Most of the inhibitory receptors bind MHC class I proteins and are expressed in a variegated fashion. It was recently shown that TIGIT, a new protein expressed by T and NK cells binds to PVR and PVR-like receptors and inhibits T cell activity indirectly through the manipulation of DC activity. Here, we show that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM. Finally, we show that TIGIT counter inhibits the NK-mediated killing of tumor cells and protects normal cells from NK-mediated cytoxicity thus providing an “alternative self” mechanism for MHC class I inhibition.

3,538 citations

Journal ArticleDOI
11 Aug 2005-Nature
TL;DR: The dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment, whose key unit is the ‘grid cell’, which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment.
Abstract: The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.

3,445 citations

Journal ArticleDOI
TL;DR: A new method for detecting and sorting spikes from multiunit recordings that combines the wave let transform with super paramagnetic clustering, which allows automatic classification of the data without assumptions such as low variance or gaussian distributions is introduced.
Abstract: This study introduces a new method for detecting and sorting spikes from multiunit recordings The method combines the wavelet transform, which localizes distinctive spike features, with superparamagnetic clustering, which allows automatic classification of the data without assumptions such as low variance or gaussian distributions Moreover, an improved method for setting amplitude thresholds for spike detection is proposed We describe several criteria for implementation that render the algorithm unsupervised and fast The algorithm is compared to other conventional methods using several simulated data sets whose characteristics closely resemble those of in vivo recordings For these data sets, we found that the proposed algorithm outperformed conventional methods

2,050 citations

Journal ArticleDOI
TL;DR: It is proposed that mechanisms of memory and planning have evolved from mechanisms of navigation in the physical world and hypothesize that the neuronal algorithms underlying navigation in real and mental space are fundamentally the same.
Abstract: In this review, Gyorgy Buzsaki and Edvard Moser discuss the most recent evidence suggesting that the navigation and memory functions of the hippocampus and entorhinal cortex are supported by the same neuronal algorithms. They propose that the mechanisms fueling the memory and mental travel engines in the hippocampal-entorhinal system evolved from the mechanisms supporting navigation in the physical world.

1,412 citations