scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Directed diffusion: a scalable and robust communication paradigm for sensor networks

TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Abstract: Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the directed diffusion paradigm for such coordination. Directed diffusion is datacentric in that all communication is for named data. All nodes in a directed diffusion-based network are application-aware. This enables diffusion to achieve energy savings by selecting empirically good paths and by caching and processing data in-network. We explore and evaluate the use of directed diffusion for a simple remote-surveillance sensor network.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations


Cites background from "Directed diffusion: a scalable and ..."

  • ...Open research issues for the realization of sensor networks are also discussed....

    [...]

  • ...The required size may be smaller than even a cubic centimeter [69] which is light enough to remain suspended in the air....

    [...]

Journal ArticleDOI
TL;DR: The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections.
Abstract: The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.

14,048 citations


Cites background or methods from "Directed diffusion: a scalable and ..."

  • ...SCADDS [3, 5 ] Scalable coordination architectures for deeply http://www.isi.edu/scadds/ distributed and dynamic systems....

    [...]

  • ...Directed diffusion [ 5 ] Sets up gradients for data to flow from source to sink during interest dissemination...

    [...]

  • ...For attribute based naming, the users are more interested in querying an � Figure 4. a) The power efficiency of the routes; b) an example of data aggregation; c) the SPIN protocol [15]; d) an example of directed diffusion [ 5 ]....

    [...]

  • ...They are deployed within tens of feet of each other [ 5 ]....

    [...]

  • ...All of these subunits may need to fit into a matchbox-sized module [ 5 ]....

    [...]

Proceedings ArticleDOI
04 Jan 2000
TL;DR: The Low-Energy Adaptive Clustering Hierarchy (LEACH) as mentioned in this paper is a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multi-hop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show the LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional outing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

12,497 citations

01 Jan 2000
TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have signicant impact on the overall energy dissipation of these networks. Based on our ndings that the conventional protocols of direct transmission, minimum-transmission-energy, multihop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster base stations (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show that LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional routing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

11,412 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations


Cites background from "Directed diffusion: a scalable and ..."

  • ...Data from sensor networks are typically time sensitive, so it is important to receive the data in a timely manner....

    [...]

References
More filters
Proceedings ArticleDOI
25 Feb 1999
TL;DR: An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure and the proposed routing algorithm is quite suitable for a dynamic self starting network, as required by users wishing to utilize ad- hoc networks.
Abstract: An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. We present Ad-hoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad-hoc networks. Each mobile host operates as a specialized router, and routes are obtained as needed (i.e., on-demand) with little or no reliance on periodic advertisements. Our new routing algorithm is quite suitable for a dynamic self starting network, as required by users wishing to utilize ad-hoc networks. AODV provides loop-free routes even while repairing broken links. Because the protocol does not require global periodic routing advertisements, the demand on the overall bandwidth available to the mobile nodes is substantially less than in those protocols that do necessitate such advertisements. Nevertheless we can still maintain most of the advantages of basic distance vector routing mechanisms. We show that our algorithm scales to large populations of mobile nodes wishing to form ad-hoc networks. We also include an evaluation methodology and simulation results to verify the operation of our algorithm.

11,360 citations

Journal ArticleDOI
TL;DR: Consider writing, perhaps the first information technology: The ability to capture a symbolic representation of spoken language for long-term storage freed information from the limits of individual memory.
Abstract: Specialized elements of hardware and software, connected by wires, radio waves and infrared, will soon be so ubiquitous that no-one will notice their presence.

9,073 citations

Journal ArticleDOI
TL;DR: In this article, it is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Abstract: It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though biologically unusual system. The investigation is chiefly concerned with the onset of instability. It is found that there are six essentially different forms which this may take. In the most interesting form stationary waves appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also considered. Such a system appears to account for gastrulation. Another reaction system in two dimensions gives rise to patterns reminiscent of dappling. It is also suggested that stationary waves in two dimensions could account for the phenomena of phyllotaxis. The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote may determine the anatomical structure of the resulting organism. The theory does not make any new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account for many of the facts. The full understanding of the paper requires a good knowledge of mathematics, some biology, and some elementary chemistry. Since readers cannot be expected to be experts in all of these subjects, a number of elementary facts are explained, which can be found in text-books, but whose omission would make the paper difficult reading.

9,015 citations

01 Jan 1994
TL;DR: In this article, the authors present a protocol for routing in ad hoc networks that uses dynamic source routing, which adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently.
Abstract: An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. In such an environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination, due to the limited range of each mobile host’s wireless transmissions. This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing. The protocol adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently. Based on results from a packet-level simulation of mobile hosts operating in an ad hoc network, the protocol performs well over a variety of environmental conditions such as host density and movement rates. For all but the highest rates of host movement simulated, the overhead of the protocol is quite low, falling to just 1% of total data packets transmitted for moderate movement rates in a network of 24 mobile hosts. In all cases, the difference in length between the routes used and the optimal route lengths is negligible, and in most cases, route lengths are on average within a factor of 1.01 of optimal.

8,614 citations

Book ChapterDOI
01 Jan 1996
TL;DR: This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing that adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently.
Abstract: An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. In such an environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination, due to the limited range of each mobile host’s wireless transmissions. This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing. The protocol adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently. Based on results from a packet-level simulation of mobile hosts operating in an ad hoc network, the protocol performs well over a variety of environmental conditions such as host density and movement rates. For all but the highest rates of host movement simulated, the overhead of the protocol is quite low, falling to just 1% of total data packets transmitted for moderate movement rates in a network of 24 mobile hosts. In all cases, the difference in length between the routes used and the optimal route lengths is negligible, and in most cases, route lengths are on average within a factor of 1.01 of optimal.

8,256 citations


"Directed diffusion: a scalable and ..." refers background in this paper

  • ...Speci cally, it is a close kin of the class of several reactive routing protocols proposed in the literature [12, 20, 19]....

    [...]