scispace - formally typeset
Journal ArticleDOI

Directive photonic-bandgap antennas

Reads0
Chats0
TLDR
In this paper, a photonic bandgap (PBG) reflector was designed using a finite-difference time-domain (FDTD) code, and the FDTD computations provided the theoretical reflector's directivity.
Abstract
This paper introduces two new photonic bandgap (PBG) material applications for antennas, in which a photonic parabolic reflector is studied. It is composed of dielectric parabolic layers associated to obtain a PBG material. The frequency gap is used to reflect and focus the electromagnetic waves. This device has been designed using a finite-difference time-domain (FDTD) code. FDTD computations have provided the theoretical reflector's directivity. These results are in good agreement with measurements, and it appears that the PBG reflector presents the same directivity as a metallic parabola. A second application uses a defect PBG material mode associated with a metallic plate to increase the directivity of a patch antenna. We explain the design of such a device and propose experimental results to validate the theoretical analysis.

read more

Citations
More filters
Journal ArticleDOI

Leaky-Wave Antennas

TL;DR: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs), a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure.
OtherDOI

Leaky‐Wave Antennas

TL;DR: In this paper, an introduction history classification of leaky wave antennas is presented, along with a detailed discussion of the physics of Leaky Waves Radiation properties of one-dimensional and two-dimensional Leaky wave antenna.
Book

Electromagnetic Band Gap Structures in Antenna Engineering

TL;DR: In this paper, the FDTD method for periodic structure analysis is used for periodic structures analysis of EBG surfaces and low profile wire antennas are used for EBG surface wave antennas.
Journal ArticleDOI

An electromagnetic bandgap resonator antenna

TL;DR: In this paper, the authors introduced a new explanation of the electromagnetic bandgap (EBG) material properties using the study of the EBG structures in the frequency domain and reciprocal space.
Journal ArticleDOI

Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement

TL;DR: In this article, a dual-polarized antenna with two interleaved 2 x 2 arrays placed in a 2-layer Fabry-Perot cavity is presented. But the performance of the antenna is not as good as that of the conventional patch antennas, which have a 19 dBi gain and 30 dB of isolation between the two ports.
References
More filters
Journal ArticleDOI

Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media

Abstract: Maxwell's equations are replaced by a set of finite difference equations. It is shown that if one chooses the field points appropriately, the set of finite difference equations is applicable for a boundary condition involving perfectly conducting surfaces. An example is given of the scattering of an electromagnetic pulse by a perfectly conducting cylinder.
Journal ArticleDOI

Inhibited Spontaneous Emission in Solid-State Physics and Electronics

TL;DR: If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.
Journal ArticleDOI

A perfectly matched layer for the absorption of electromagnetic waves

TL;DR: Numerical experiments and numerical comparisons show that the PML technique works better than the others in all cases; using it allows to obtain a higher accuracy in some problems and a release of computational requirements in some others.
Journal ArticleDOI

Photonic band-gap structures

TL;DR: In this article, the photonic band gap structures, those three-dimensional periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves, are discussed.
Journal ArticleDOI

Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations

TL;DR: In this paper, a numerical method for the solution of the electromagnetic fields within an arbitrary dielectric scatterer of the order of one wavelength in diameter is described, and an error of less than /spl plusmn/10 percent in locating and evaluating the standing wave peaks within the cylinder is achieved for a program execution time of 1 min.
Related Papers (5)