scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Discovery of Pemigatinib: A Potent and Selective Fibroblast Growth Factor Receptor (FGFR) Inhibitor.

TL;DR: Pemigatinib as discussed by the authors is a highly potent and selective inhibitor of FGFR1, FGFR2, and FGFR3 with excellent physiochemical properties and pharmacokinetic profiles.
Abstract: Aberrant activation of FGFR has been linked to the pathogenesis of many tumor types. Selective inhibition of FGFR has emerged as a promising approach for cancer treatment. Herein, we describe the discovery of compound 38 (INCB054828, pemigatinib), a highly potent and selective inhibitor of FGFR1, FGFR2, and FGFR3 with excellent physiochemical properties and pharmacokinetic profiles. Pemigatinib has received accelerated approval from the U.S. Food and Drug Administration for the treatment of adults with previously treated, unresectable locally advanced or metastatic cholangiocarcinoma with a FGFR2 fusion or other rearrangement. Additional clinical trials are ongoing to evaluate pemigatinib in patients with FGFR alterations.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review that recaps this large data set into an accessible format for the medicinal chemistry community, along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020 and provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications.
Abstract: The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.

57 citations

Journal ArticleDOI
TL;DR: In this paper , a review of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future, including immunotherapy and immunotherapy-based immunotherapies.
Abstract: The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as therapeutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future.

22 citations

Journal ArticleDOI
TL;DR: This review starts by introducing the biological basis of FGF/FGFR signaling, then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of Small-Molecule-based therapies of different modalities.
Abstract: Targeted therapy is a groundbreaking innovation for cancer treatment. Among the receptor tyrosine kinases, the fibroblast growth factor receptors (FGFRs) garnered substantial attention as promising therapeutic targets due to their fundamental biological functions and frequently observed abnormality in tumors. In the past 2 decades, several generations of FGFR kinase inhibitors have been developed. This review starts by introducing the biological basis of FGF/FGFR signaling. It then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of small-molecule-based therapies of different modalities. It ends with our perspectives for the development of novel FGFR inhibitors.

12 citations

Journal ArticleDOI
TL;DR: The covalent MBI of CYP3A by PEM is reported for the first time and its bioactivation pathway involving the metabolic activation of PEM and its major O-desmethylated metabolite to reactive iminium ion intermediates is deciphered.
Abstract: We recently established the mechanism-based inactivation (MBI) of cytochrome P450 3A (CYP3A) by the fibroblast growth factor receptor (FGFR) inhibitors erdafitinib and infigratinib. Serendipitously, our preliminary data have also revealed that pemigatinib (PEM), another clinically approved FGFR1-3 inhibitor, similarly elicited time-dependent inhibition of CYP3A. This was rather unexpected, as it was previously purported that PEM did not pose any metabolism-dependent liabilities due to the absence of glutathione-related conjugates in metabolic profiling experiments conducted in human liver microsomes. Here, we confirmed that PEM inhibited both CYP3A isoforms in a time-, concentration-, and cofactor-dependent manner consistent with MBI, with inactivator concentration at half-maximum rate constant, maximum inactivation rate constant, and partition ratio of 8.69 and 11.95 μM, 0.108 and 0.042 min−1, and approximately 44 and approximately 47 for CYP3A4 and CYP3A5, respectively. Although the rate of inactivation was diminished by coincubation with an alternative substrate or direct inhibitor of CYP3A, the inclusion of nucleophilic trapping agents afforded no such protection. Furthermore, the lack of catalytic activity recovery following dialysis and oxidation with potassium ferricyanide coupled with the absence of a spectrally resolvable peak in the Soret region collectively implied that the underlying mechanism of inactivation was not elicited via the formation of pseudo-irreversible metabolite-intermediate complexes. Finally, utilizing cyanide trapping and high-resolution mass spectrometry, we illuminated the direct and sequential oxidative bioactivation of PEM and its major O-desmethylated metabolite at its distal morpholine moiety to reactive iminium ion hard electrophilic species that could covalently inactivate CYP3A via MBI. SIGNIFICANCE STATEMENT This study reports for the first time the covalent MBI of CYP3A by PEM and deciphered its bioactivation pathway involving the metabolic activation of PEM and its major O-desmethylated metabolite to reactive iminium ion intermediates. Following which, a unique covalent docking methodology was harnessed to unravel the structural and molecular determinants underpinning its inactivation. Findings from this study lay the foundation for future investigation of clinically relevant drug–drug interactions between PEM and concomitant substrates of CYP3A.

9 citations

Journal ArticleDOI
TL;DR: A series of aminoindazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4, providing a promising new starting point for future drug discovery combatingFGFR4 gatekeeper mediated resistance in HCC patients.
Abstract: Aberrant FGF19/FGFR4 signaling has been shown to be an oncogenic driver of growth and survival in human hepatocellular carcinoma (HCC) with several pan-FGFR inhibitors and FGFR4-selective inhibitors currently being evaluated in the clinic. However, FGFR4 gatekeeper mutation induced acquired resistance remains an unmet clinical challenge for HCC treatment. Thus, a series of aminoindazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4. One representative compound (7v) exhibited excellent potency against FGFR4, FGFR4V550L, and FGFR4V550M with nanomolar activity in both the biochemical and cellular assays while sparing FGFR1/2/3. While compound 7v demonstrated modest in vivo antitumor efficacy in nude mice bearing the Huh-7 xenograft model consistent with its unfavorable pharmacokinetic properties, it provides a promising new starting point for future drug discovery combating FGFR4 gatekeeper mediated resistance in HCC patients.

8 citations

References
More filters
Journal ArticleDOI
TL;DR: Reduced molecular flexibility, as measured by the number of rotatable bonds, and low polar surface area or total hydrogen bond count are found to be important predictors of good oral bioavailability, independent of molecular weight.
Abstract: Oral bioavailability measurements in rats for over 1100 drug candidates studied at SmithKline Beecham Pharmaceuticals (now GlaxoSmithKline) have allowed us to analyze the relative importance of molecular properties considered to influence that drug property. Reduced molecular flexibility, as measured by the number of rotatable bonds, and low polar surface area or total hydrogen bond count (sum of donors and acceptors) are found to be important predictors of good oral bioavailability, independent of molecular weight. That on average both the number of rotatable bonds and polar surface area or hydrogen bond count tend to increase with molecular weight may in part explain the success of the molecular weight parameter in predicting oral bioavailability. The commonly applied molecular weight cutoff at 500 does not itself significantly separate compounds with poor oral bioavailability from those with acceptable values in this extensive data set. Our observations suggest that compounds which meet only the two cr...

5,191 citations

Journal ArticleDOI
TL;DR: It is demonstrated that saturation correlates with solubility, an experimental physical property important to success in the drug discovery setting, and both complexity and the presence of chiral centers correlate with success as compounds transition from discovery, through clinical testing, to drugs.
Abstract: The medicinal chemistry community has become increasingly aware of the value of tracking calculated physical properties such as molecular weight, topological polar surface area, rotatable bonds, and hydrogen bond donors and acceptors. We hypothesized that the shift to high-throughput synthetic practices over the past decade may be another factor that may predispose molecules to fail by steering discovery efforts toward achiral, aromatic compounds. We have proposed two simple and interpretable measures of the complexity of molecules prepared as potential drug candidates. The first is carbon bond saturation as defined by fraction sp3 (Fsp3) where Fsp3 = (number of sp3 hybridized carbons/total carbon count). The second is simply whether a chiral carbon exists in the molecule. We demonstrate that both complexity (as measured by Fsp3) and the presence of chiral centers correlate with success as compounds transition from discovery, through clinical testing, to drugs. In an attempt to explain these observations,...

2,396 citations

Journal ArticleDOI
TL;DR: There is now substantial evidence for the importance of FGF signalling in the pathogenesis of diverse tumour types, and clinical reagents that specifically target the FGFs or FGF receptors are being developed.
Abstract: Fibroblast growth factors (FGFs) and their receptors control a wide range of biological functions, regulating cellular proliferation, survival, migration and differentiation. Although targeting FGF signalling as a cancer therapeutic target has lagged behind that of other receptor tyrosine kinases, there is now substantial evidence for the importance of FGF signalling in the pathogenesis of diverse tumour types, and clinical reagents that specifically target the FGFs or FGF receptors are being developed. Although FGF signalling can drive tumorigenesis, in different contexts FGF signalling can mediate tumour protective functions; the identification of the mechanisms that underlie these differential effects will be important to understand how FGF signalling can be most appropriately therapeutically targeted.

2,211 citations

Journal ArticleDOI
TL;DR: The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2,FGFR3 and FGFR4.

1,846 citations

Journal ArticleDOI
TL;DR: Traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in thetreatment of metabolic syndrome and hypophosphataemic diseases are discussed.
Abstract: The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.

1,655 citations

Related Papers (5)