scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

TL;DR: The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound.
Abstract: New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis, several of which are currently in clinical trials. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis.
Citations
More filters
Journal ArticleDOI
21 Jan 2016-Nature
TL;DR: The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large as discussed by the authors, and the evolution and widespread distribution of antibiotic-resistant elements in bacterial pathogens has made diseases that were once easily treatable deadly again.
Abstract: The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era.

1,481 citations

Journal ArticleDOI
TL;DR: The Japanese Global Health Innovative Technology (GHIT) Fund convened with experts from the Medicines for Malaria Venture, the Drugs for Neglected Diseases initiative and the TB Alliance, together with representatives from the Bill &Melinda Gates Foundation, to set disease-specific criteria for hits and leads for malaria, tuberculosis, visceral leishmaniasis and Chagas disease.
Abstract: Reducing the burden of infectious diseases that affect people in the developing world requires sustained collaborative drug discovery efforts. The quality of the chemical starting points for such projects is a key factor in improving the likelihood of clinical success, and so it is important to set clear go/no-go criteria for the progression of hit and lead compounds. With this in mind, the Japanese Global Health Innovative Technology (GHIT) Fund convened with experts from the Medicines for Malaria Venture, the Drugs for Neglected Diseases initiative and the TB Alliance, together with representatives from the Bill &Melinda Gates Foundation, to set disease-specific criteria for hits and leads for malaria, tuberculosis, visceral leishmaniasis and Chagas disease. Here, we present the agreed criteria and discuss the underlying rationale.

403 citations

Journal ArticleDOI
TL;DR: The need to engage the community in design, implementation, and uptake of research is emphasised, to increase international cooperation between drug developers and health-care providers adopting new regimens.
Abstract: About 1·3 million people died of tuberculosis in 2012, despite availability of effective drug treatment. Barriers to improvements in outcomes include long treatment duration (resulting in poor patient adherence and loss of patients to follow-up), complex regimens that involve expensive and toxic drugs, toxic effects when given with antiretroviral therapy, and multidrug resistance. After 50 years of no antituberculosis drug development, a promising pipeline is emerging through the repurposing of old drugs, re-engineering of existing antibacterial compounds, and discovery of new compounds. A range of novel antituberculosis drugs are in preclinical development, several phase 2 and 3 trials are underway, and use of adjunct therapies is being explored for drug-sensitive and drug-resistant tuberculosis. Historical advances include approval of two new drugs, delamanid and bedaquiline. Combinations of new and existing drugs are being assessed to shorten the duration of therapy and to treat multidrug-resistant tuberculosis. There has also been progress in development of new antituberculosis drugs that are active against dormant or persister populations of Mycobacterium tuberculosis. In this Review, we discuss recent advances in antituberculosis drug discovery and development, clinical trial designs, laboratory methods, and adjunct host-directed therapies, and we provide an update of phase 3 trials of various fluoroquinolones (RIFAQUIN, NIRT, OFLOTUB, and REMoxTB). We also emphasise the need to engage the community in design, implementation, and uptake of research, to increase international cooperation between drug developers and health-care providers adopting new regimens.

307 citations

Journal ArticleDOI
TL;DR: There is growing global recognition that the continued emergence of multidrug-resistant bacteria poses a serious threat to human health and action plans released by the World Health Organization and governments of the UK and USA in particular recognize that discovering new antibiotics, particularly those with new modes of action, is one essential element required to avert future catastrophic pandemics.
Abstract: There is growing global recognition that the continued emergence of multidrug-resistant bacteria poses a serious threat to human health. Action plans released by the World Health Organization and governments of the UK and USA in particular recognize that discovering new antibiotics, particularly those with new modes of action, is one essential element required to avert future catastrophic pandemics. This review lists the 30 antibiotics and two β-lactamase/β-lactam combinations first launched since 2000, and analyzes in depth seven new antibiotics and two new β-lactam/β-lactamase inhibitor combinations launched since 2013. The development status, mode of action, spectra of activity and genesis (natural product, natural product-derived, synthetic or protein/mammalian peptide) of the 37 compounds and six β-lactamase/β-lactam combinations being evaluated in clinical trials between 2013 and 2015 are discussed. Compounds discontinued from clinical development since 2013 and new antibacterial pharmacophores are also reviewed.

288 citations

Journal ArticleDOI
TL;DR: The challenges to developing drugs to treat tuberculosis are discussed and how the field has adapted to these difficulties, with an emphasis on drug discovery approaches that might produce more effective agents and treatment regimens.

262 citations

References
More filters
Journal Article
TL;DR: The clonogenic assay was more sensitive when continuous drug exposures were utilized, although this was primarily related to the increased drug exposure time, and therefore it offers a valid, simple method of assessing chemosensitivity in established cell lines.
Abstract: Drug sensitivity assays were performed using a variation of a colorimetric [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)] assay on V79, CHO-AuxB1, CHRC5, NCI-H460, and NCI-H249 cell lines following optimization of experimental conditions for each cell line. Results from this assay were compared with data assimilated simultaneously by clonogenic assay and by dye exclusion assay. Good correlation was observed using the CHO-AuxB1 cell line and the pleiotropic drug-resistant mutant CHRC5, with similar degrees of relative resistance observed with both the MTT and clonogenic assays. Good correlation was observed between the clonogenic and MTT assays for 1-h drug exposures, although the MTT assay was more sensitive to vinblastine. In general, the clonogenic assay was more sensitive when continuous drug exposures were utilized, although this was primarily related to the increased drug exposure time. While the use of the MTT assay in drug sensitivity testing of primary tumor samples is limited, since contaminating normal cells may also reduce the tetrazolium, the MTT assay can be semiautomated, and therefore it offers a valid, simple method of assessing chemosensitivity in established cell lines.

3,896 citations

Journal ArticleDOI
TL;DR: The use of transposon site hybridization (TraSH) is described to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
Abstract: Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.

2,362 citations

Journal ArticleDOI
14 Jan 2005-Science
TL;DR: A diarylquinoline, R207910, is identified that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro and mutants selected in vitro suggest that the drug targets the proton pump of adenosine triphosphate (ATP) synthase.
Abstract: The incidence of tuberculosis has been increasing substantially on a worldwide basis over the past decade, but no tuberculosis-specific drugs have been discovered in 40 years. We identified a diarylquinoline, R207910, that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro (minimum inhibitory concentration 0.06 μg/ml). In mice, R207910 exceeded the bactericidal activities of isoniazid and rifampin by at least 1 log unit. Substitution of drugs included in the World Health Organization's first-line tuberculosis treatment regimen (rifampin, isoniazid, and pyrazinamide) with R207910 accelerated bactericidal activity, leading to complete culture conversion after 2 months of treatment in some combinations. A single dose of R207910 inhibited mycobacterial growth for 1 week. Plasma levels associated with efficacy in mice were well tolerated in healthy human volunteers. Mutants selected in vitro suggest that the drug targets the proton pump of adenosine triphosphate (ATP) synthase.

1,907 citations

Journal ArticleDOI
Anil Koul1, Eric Arnoult1, Nacer Lounis1, Jerome Guillemont1, Koen Andries1 
27 Jan 2011-Nature
TL;DR: In this review, innovations in TB drug discovery and evolving strategies to bring newer agents more quickly to patients are discussed.
Abstract: Tuberculosis (TB) is more prevalent in the world today than at any other time in human history Mycobacterium tuberculosis, the pathogen responsible for TB, uses diverse strategies to survive in a variety of host lesions and to evade immune surveillance A key question is how robust are our approaches to discovering new TB drugs, and what measures could be taken to reduce the long and protracted clinical development of new drugs The emergence of multi-drug-resistant strains of M tuberculosis makes the discovery of new molecular scaffolds a priority, and the current situation even necessitates the re-engineering and repositioning of some old drug families to achieve effective control Whatever the strategy used, success will depend largely on our proper understanding of the complex interactions between the pathogen and its human host In this review, we discuss innovations in TB drug discovery and evolving strategies to bring newer agents more quickly to patients

953 citations

Journal ArticleDOI
22 Jun 2000-Nature
TL;DR: It is concluded that nitroimidazopyrans offer the practical qualities of a small molecule with the potential for the treatment of tuberculosis and bactericidal activity against both replicating and static M. tuberculosis.
Abstract: Mycobacterium tuberculosis, which causes tuberculosis, is the greatest single infectious cause of mortality worldwide, killing roughly two million people annually. Estimates indicate that one-third of the world population is infected with latent M. tuberculosis. The synergy between tuberculosis and the AIDS epidemic, and the surge of multidrug-resistant clinical isolates of M. tuberculosis have reaffirmed tuberculosis as a primary public health threat. However, new antitubercular drugs with new mechanisms of action have not been developed in over thirty years. Here we report a series of compounds containing a nitroimidazopyran nucleus that possess antitubercular activity. After activation by a mechanism dependent on M. tuberculosis F420 cofactor, nitroimidazopyrans inhibited the synthesis of protein and cell wall lipid. In contrast to current antitubercular drugs, nitroimidazopyrans exhibited bactericidal activity against both replicating and static M. tuberculosis. Lead compound PA-824 showed potent bactericidal activity against multidrugresistant M. tuberculosis and promising oral activity in animal infection models. We conclude that nitroimidazopyrans offer the practical qualities of a small molecule with the potential for the treatment of tuberculosis.

929 citations

Related Papers (5)