scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Discrete Hartley transform

01 Dec 1983-Journal of the Optical Society of America (Optical Society of America)-Vol. 73, Iss: 12, pp 1832-1835
TL;DR: The discrete Hartley transform (DHT) resembles the discrete Fourier transform (DFT) but is free from two characteristics of the DFT that are sometimes computationally undesirable and promises to speed up Fourier-transform calculations.
Abstract: The discrete Hartley transform (DHT) resembles the discrete Fourier transform (DFT) but is free from two characteristics of the DFT that are sometimes computationally undesirable. The inverse DHT is identical with the direct transform, and so it is not necessary to keep track of the +i and −i versions as with the DFT. Also, the DHT has real rather than complex values and thus does not require provision for complex arithmetic or separately managed storage for real and imaginary parts. Nevertheless, the DFT is directly obtainable from the DHT by a simple additive operation. In most image-processing applications the convolution of two data sequences f1 and f2 is given by DHT of [(DHT of f1) × (DHT of f2)], which is a rather simpler algorithm than the DFT permits, especially if images are. to be manipulated in two dimensions. It permits faster computing. Since the speed of the fast Fourier transform depends on the number of multiplications, and since one complex multiplication equals four real multiplications, a fast Hartley transform also promises to speed up Fourier-transform calculations. The name discrete Hartley transform is proposed because the DHT bears the same relation to an integral transform described by Hartley [ HartleyR. V. L., Proc. IRE30, 144 ( 1942)] as the DFT bears to the Fourier transform.
Citations
More filters
Posted Content
TL;DR: In this paper, a generalized discrete cosine transform with three parameters was proposed and its orthogonality was proved for some new cases, and a new type of DCT was also proposed.
Abstract: The discrete cosine transform (DCT), introduced by Ahmed, Natarajan and Rao, has been used in many applications of digital signal processing, data compression and information hiding. There are four types of the discrete cosine transform. In simulating the discrete cosine transform, we propose a generalized discrete cosine transform with three parameters, and prove its orthogonality for some new cases. A new type of discrete cosine transform is proposed and its orthogonality is proved. Finally, we propose a generalized discrete W transform with three parameters, and prove its orthogonality for some new cases.

1,096 citations

Journal ArticleDOI
TL;DR: Note: V. Madisetti, D. B. Williams, Eds.

862 citations

01 Jan 1997
TL;DR: MadMadisetti, D. B. Williams, Eds. as discussed by the authors, LCAV-2005-009 Record created on 2005-06-27, modified on 2017-05-12
Abstract: Note: V. K. Madisetti, D. B. Williams, Eds. Reference LCAV-CHAPTER-2005-009 Record created on 2005-06-27, modified on 2017-05-12

839 citations

Journal ArticleDOI
TL;DR: In this paper, the evolution of CORDIC, an iterative arithmetic computing algorithm capable of evaluating various elementary functions using a unified shift-and-add approach, is reviewed.
Abstract: The evolution of CORDIC, an iterative arithmetic computing algorithm capable of evaluating various elementary functions using a unified shift-and-add approach, and of CORDIC processors is reviewed. A method to utilize a CORDIC processor array to implement digital signal processing algorithms is presented. The approach is to reformulate existing DSP algorithms so that they are suitable for implementation with an array performing circular or hyperbolic rotation operations. Three categories of algorithm are surveyed: linear transformations, digital filters, and matrix-based DSP algorithms. >

492 citations

Journal ArticleDOI
01 Aug 1984
TL;DR: The Fast Hartley Transform (FHT) is as fast as or faster than the Fast Fourier Transform (FFT) and serves for all the uses such as spectral analysis, digital processing, and convolution to which the FFT is at present applied.
Abstract: A fast algorithm has been worked out for performing the Discrete Hartley Transform (DHT) of a data sequence of N elements in a time proportional to Nlog 2 N. The Fast Hartley Transform (FHT) is as fast as or faster than the Fast Fourier Transform (FFT) and serves for all the uses such as spectral analysis, digital processing, and convolution to which the FFT is at present applied. A new timing diagram (stripe diagram) is presented to illustrate the overall dependence of running time on the subroutines composing one implementation; this mode of presentation supplements the simple counting of multiplies and adds. One may view the Fast Hartley procedure as a sequence of matrix operations on the data and thus as constituting a new factorization of the DFT matrix operator; this factorization is presented. The FHT computes convolutions and power spectra distinctly faster than the FFT.

455 citations

References
More filters
Book
01 Jan 1965
TL;DR: In this paper, the authors provide a broad overview of Fourier Transform and its relation with the FFT and the Hartley Transform, as well as the Laplace Transform and the Laplacian Transform.
Abstract: 1 Introduction 2 Groundwork 3 Convolution 4 Notation for Some Useful Functions 5 The Impulse Symbol 6 The Basic Theorems 7 Obtaining Transforms 8 The Two Domains 9 Waveforms, Spectra, Filters and Linearity 10 Sampling and Series 11 The Discrete Fourier Transform and the FFT 12 The Discrete Hartley Transform 13 Relatives of the Fourier Transform 14 The Laplace Transform 15 Antennas and Optics 16 Applications in Statistics 17 Random Waveforms and Noise 18 Heat Conduction and Diffusion 19 Dynamic Power Spectra 20 Tables of sinc x, sinc2x, and exp(-71x2) 21 Solutions to Selected Problems 22 Pictorial Dictionary of Fourier Transforms 23 The Life of Joseph Fourier

5,714 citations

Journal ArticleDOI
R. V. L. Hartley1
01 Mar 1942
TL;DR: In this article, the Fourier identity is expressed in a more symmetrical form which leads to certain analogies between the function of the original variable and its transform, and it permits a function of time to be analyzed into two independent sets of sinusoidal components, one of which is represented in terms of positive frequencies, and the other of negative.
Abstract: The Fourier identity is here expressed in a more symmetrical form which leads to certain analogies between the function of the original variable and its transform. Also it permits a function of time, for example, to be analyzed into two independent sets of sinusoidal components, one of which is represented in terms of positive frequencies, and the other of negative. The steady-state treatment of transmission problems in terms of this analysis is similar to the familiar ones and may be carried out either in terms of real quantities or of complex exponentials. In the transient treatment, use is made of the analogies referred to above, and their relation to the method of "paired echoes" is discussed. A restatement is made of the condition which is known to be necessary in order that a given steady-state characteristic may represent a passive or stable active system (actual or ideal). A particular necessary condition is deduced from this as an illustration.

278 citations

Journal ArticleDOI
TL;DR: An integral transform which converts a real spatial (or temporal) function into a real frequency function is introduced in this paper, and the properties of this transform are investigated, and it is concluded that this transform is parallel to the Fourier transform and may be applied to all fields in which the FFT has been successfully applied.

31 citations