scispace - formally typeset
BookDOI

Discrete subgroups of semisimple Lie groups

Reads0
Chats0
TLDR
The Structure of the Book as discussed by the authors is a collection of essays about algebraic groups over arbitrary fields, including a discussion of the relation between the structure of closed subgroups and property (T) of normal subgroups.
Abstract
1. Statement of Main Results.- 2. Synopsis of the Chapters.- 3. Remarks on the Structure of the Book, References and Notation.- 1. Preliminaries.- 0. Notation, Terminology and Some Basic Facts.- 1. Algebraic Groups Over Arbitrary Fields.- 2. Algebraic Groups Over Local Fields.- 3. Arithmetic Groups.- 4. Measure Theory and Ergodic Theory.- 5. Unitary Representations and Amenable Groups.- II. Density and Ergodicity Theorems.- 1. Iterations of Linear Transformations.- 2. Density Theorems for Subgroups with Property (S)I.- 3. The Generalized Mautner Lemma and the Lebesgue Spectrum.- 4. Density Theorems for Subgroups with Property (S)II.- 5. Non-Discrete Closed Subgroups of Finite Covolume.- 6. Density of Projections and the Strong Approximation Theorem.- 7. Ergodicity of Actions on Quotient Spaces.- III. Property (T).- 1. Representations Which Are Isolated from the Trivial One-Dimensional Representation.- 2. Property (T) and Some of Its Consequences. Relationship Between Property (T) for Groups and for Their Subgroups.- 3. Property (T) and Decompositions of Groups into Amalgams.- 4. Property (R).- 5. Semisimple Groups with Property (T).- 6. Relationship Between the Structure of Closed Subgroups and Property (T) of Normal Subgroups.- IV. Factor Groups of Discrete Subgroups.- 1. b-metrics, Vitali's Covering Theorem and the Density Point Theorem.- 2. Invariant Algebras of Measurable Sets.- 3. Amenable Factor Groups of Lattices Lying in Direct Products.- 4. Finiteness of Factor Groups of Discrete Subgroups.- V. Characteristic Maps.- 1. Auxiliary Assertions.- 2. The Multiplicative Ergodic Theorem.- 3. Definition and Fundamental Properties of Characteristic Maps.- 4. Effective Pairs.- 5. Essential Pairs.- VI. Discrete Subgroups and Boundary Theory.- 1. Proximal G-Spaces and Boundaries.- 2. ?-Boundaries.- 3. Projective G-Spaces.- 4. Equivariant Measurable Maps to Algebraic Varieties.- VII. Rigidity.- 1. Auxiliary Assertions.- 2. Cocycles on G-Spaces.- 3. Finite-Dimensional Invariant Subspaces.- 4. Equivariant Measurable Maps and Continuous Extensions of Representations.- 5. Superrigidity (Continuous Extensions of Homomorphisms of Discrete Subgroups to Algebraic Groups Over Local Fields).- 6. Homomorphisms of Discrete Subgroups to Algebraic Groups Over Arbitrary Fields.- 7. Strong Rigidity (Continuous Extensions of Isomorphisms of Discrete Subgroups).- 8. Rigidity of Ergodic Actions of Semisimple Groups.- VIII. Normal Subgroups and "Abstract" Homomorphisms of Semisimple Algebraic Groups Over Global Fields.- 1. Some Properties of Fundamental Domains for S-Arithmetic Subgroups.- 2. Finiteness of Factor Groups of S-Arithmetic Subgroups.- 3. Homomorphisms of S-Arithmetic Subgroups to Algebraic Groups.- IX. Arithmeticity.- 1. Statement of the Arithmeticity Theorems.- 2. Proof of the Arithmeticity Theorems.- 3. Finite Generation of Lattices.- 4. Consequences of the Arithmeticity Theorems I.- 5. Consequences of the Arithmeticity Theorems II.- 6. Arithmeticity, Volume of Quotient Spaces, Finiteness of Factor Groups, and Superrigidity of Lattices in Semisimple Lie Groups.- 7. Applications to the Theory of Symmetric Spaces and Theory of Complex Manifolds.- Appendices.- A. Proof of the Multiplicative Ergodic Theorem.- B. Free Discrete Subgroups of Linear Groups.- C. Examples of Non-Arithmetic Lattices.- Historical and Bibliographical Notes.- References.

read more

Citations
More filters
Book

Analytic Number Theory

TL;DR: In this paper, the critical zeros of the Riemann zeta function are defined and the spacing of zeros is defined. But they are not considered in this paper.
Book

Lectures on Spaces of Nonpositive Curvature

TL;DR: In this paper, the Hadamard Cartan Theorem and the Hopf-Rinow Theorem for rank rigidity of geodesic flows on metric spaces are discussed.
Book ChapterDOI

Mapping Class Groups

TL;DR: The mapping class group Mod S of an orientable surface S is defined as the group of isotopy classes of orientation-preserving diffeomorphisms S → S. In addition to being a central object of the topology of surfaces, these groups also play an important role in the theory of Teichmuller spaces and in algebraic geometry as mentioned in this paper.
Journal ArticleDOI

The gross-kohnen-zagier theorem in higher dimensions

TL;DR: The Gross-Kohnen-Zagier theorem generalizes to higher dimensions in this paper, where the authors give a proof of this theorem in terms of coefficients of modular forms.
MonographDOI

Fundamental Groups of Compact Kähler Manifolds

Jaume Amorós
TL;DR: The de Rham fundamental group of Kahler manifolds and groups is a fundamental group for infinite groups as discussed by the authors, which is a type of Hodge theory for fibering Kahler manifold and groups.