scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease

TL;DR: The extent of nigrostriatal degeneration in patients with Parkinson's disease at different disease durations from time of diagnosis is investigated and loss of dopaminergic markers in the dorsal putamen occurs rapidly and is virtually complete by 4 years post-diagnosis.
Abstract: The pace of nigrostriatal degeneration, both with regards to striatal denervation and loss of melanin and tyrosine hydroxylase-positive neurons, is poorly understood especially early in the Parkinson's disease process. This study investigated the extent of nigrostriatal degeneration in patients with Parkinson's disease at different disease durations from time of diagnosis. Brains of patients with Parkinson's disease (n=28) with post-diagnostic intervals of 1-27 years and normal elderly control subjects (n=9) were examined. Sections of the post-commissural putamen and substantia nigra pars compacta were processed for tyrosine hydroxylase and dopamine transporter immunohistochemistry. The post-commissural putamen was selected due to tissue availability and the fact that dopamine loss in this region is associated with motor disability in Parkinson's disease. Quantitative assessments of putaminal dopaminergic fibre density and stereological estimates of the number of melanin-containing and tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta (both in total and in subregions) were performed by blinded investigators in cases where suitable material was available (n=17). Dopaminergic markers in the dorsal putamen showed a modest loss at 1 year after diagnosis in the single case available for study. There was variable (moderate to marked) loss, at 3 years. At 4 years post-diagnosis and thereafter, there was virtually complete loss of staining in the dorsal putamen with only an occasional abnormal dopaminergic fibre detected. In the substantia nigra pars compacta, there was a 50-90% loss of tyrosine hydroxylase-positive neurons from the earliest time points studied with only marginal additional loss thereafter. There was only a ∼10% loss of melanized neurons in the one case evaluated 1 year post-diagnosis, and variable (30 to 60%) loss during the first several years post-diagnosis with more gradual and subtle loss in the second decade. At all time points, there were more melanin-containing than tyrosine hydroxylase-positive cells. Loss of dopaminergic markers in the dorsal putamen occurs rapidly and is virtually complete by 4 years post-diagnosis. Loss of melanized nigral neurons lags behind the loss of dopamine markers. These findings have important implications for understanding the nature of Parkinson's disease neurodegeneration and for studies of putative neuroprotective/restorative therapies.
Citations
More filters
Journal ArticleDOI
TL;DR: A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40–130 billion glial cells, and the current status of knowledge about the number of cells is reviewed.
Abstract: For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.

683 citations


Cites background from "Disease duration and the integrity ..."

  • ...The Journal of Comparative Neurology | Research in Systems Neuroscience 3881 classical studies documenting the loss of neurons in degenerative diseases, for example correlating the extent of neuron loss with disease severity (Damier et al., 1999; Stark and Pakkenberg, 2004; Kordower et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: The evidence for and against the spreading LP model are discussed, as well as evidence that cell-autonomous factors govern both α-syn pathology and neuronal death.
Abstract: Intracellular α-synuclein (α-syn)-rich protein aggregates called Lewy pathology (LP) and neuronal death are commonly found in the brains of patients with clinical Parkinson disease (cPD). It is widely believed that LP appears early in the disease and spreads in synaptically coupled brain networks, driving neuronal dysfunction and death. However, post-mortem analysis of human brains and connectome-mapping studies show that the pattern of LP in cPD is not consistent with this simple model, arguing that, if LP propagates in cPD, it must be gated by cell- or region-autonomous mechanisms. Moreover, the correlation between LP and neuronal death is weak. In this Review, we briefly discuss the evidence for and against the spreading LP model, as well as evidence that cell-autonomous factors govern both α-syn pathology and neuronal death.

669 citations

Journal ArticleDOI
TL;DR: Supporting this concept, intracerebral inoculation of synthetic recombinant α‐synuclein fibrils can trigger α‐Synuclein pathology in mice, and it remains uncertain whether the pathogenic effects of recombinant synthetic α‐ synuclein may apply to PD‐linked pathological α‐ Synuclein and occur in species closer to humans.
Abstract: Objective Mounting evidence suggests that α-synuclein, a major protein component of Lewy bodies (LB), may be responsible for initiating and spreading the pathological process in Parkinson disease (PD). Supporting this concept, intracerebral inoculation of synthetic recombinant α-synuclein fibrils can trigger α-synuclein pathology in mice. However, it remains uncertain whether the pathogenic effects of recombinant synthetic α-synuclein may apply to PD-linked pathological α-synuclein and occur in species closer to humans. Methods Nigral LB-enriched fractions containing pathological α-synuclein were purified from postmortem PD brains by sucrose gradient fractionation and subsequently inoculated into the substantia nigra or striatum of wild-type mice and macaque monkeys. Control animals received non-LB fractions containing soluble α-synuclein derived from the same nigral PD tissue. Results In both mice and monkeys, intranigral or intrastriatal inoculations of PD-derived LB extracts resulted in progressive nigrostriatal neurodegeneration starting at striatal dopaminergic terminals. No neurodegeneration was observed in animals receiving non-LB fractions from the same patients. In LB-injected animals, exogenous human α-synuclein was quickly internalized within host neurons and triggered the pathological conversion of endogenous α-synuclein. At the onset of LB-induced degeneration, host pathological α-synuclein diffusely accumulated within nigral neurons and anatomically interconnected regions, both anterogradely and retrogradely. LB-induced pathogenic effects required both human α-synuclein present in LB extracts and host expression of α-synuclein. Interpretation α-Synuclein species contained in PD-derived LB are pathogenic and have the capacity to initiate a PD-like pathological process, including intracellular and presynaptic accumulations of pathological α-synuclein in different brain areas and slowly progressive axon-initiated dopaminergic nigrostriatal neurodegeneration. ANN NEUROL 2014;75:351–362

527 citations


Cites result from "Disease duration and the integrity ..."

  • ...This is consistent with the pattern of nigrostriatal degeneration that is believed to occur in PD patients, based on evidence from human postmortem studies, functional neuroimaging, genetic causes of the disease, and neurotoxin animal models.(29,30) In agreement with this, LB-induced accumulations of FIGURE 6: a-Synuclein pathology in Lewy bodies (LB)-injected monkeys....

    [...]

  • ...Our results indicate that nigral LB extracts derived from PD patients are able to initiate a slowly progressive nigrostriatal neurodegenerative process affecting initially and more extensively dopaminergic axon terminals in the striatum rather than SNpc cell bodies, which is consistent with the pattern of nigrostriatal degeneration occurring in PD patients.(29,30)...

    [...]

Journal ArticleDOI
TL;DR: Recent studies have determined that genes known to have a causative role in the development of PD are expressed inAstrocytes and have important roles in astrocyte function, and their impact on understanding of the pathophysiology of PD is discussed.

368 citations


Cites background from "Disease duration and the integrity ..."

  • ...PD is a common neurodegenerative disease, pathologically characterised by the loss of dopaminergic neurons (see Glossary) in the substantia nigra pars compacta (SNc) [3]....

    [...]

Journal ArticleDOI
05 Nov 2015-PLOS ONE
TL;DR: The permeability to LPS is likely to be increased without compromising the integrity of intestinal mucosa in PD, and the increased intestinal permeability in PD may make the patients susceptible to intestinal dysbiosis.
Abstract: Background The intestine is one of the first affected organs in Parkinson’s disease (PD). PD subjects show abnormal staining for Escherichia coli and α-synuclein in the colon. Methods We recruited 52 PD patients and 36 healthy cohabitants. We measured serum markers and quantified the numbers of 19 fecal bacterial groups/genera/species by quantitative RT-PCR of 16S or 23S rRNA. Although the six most predominant bacterial groups/genera/species covered on average 71.3% of total intestinal bacteria, our analysis was not comprehensive compared to metagenome analysis or 16S rRNA amplicon sequencing. Results In PD, the number of Lactobacillus was higher, while the sum of analyzed bacteria, Clostridium coccoides group, and Bacteroides fragilis group were lower than controls. Additionally, the sum of putative hydrogen-producing bacteria was lower in PD. A linear regression model to predict disease durations demonstrated that C. coccoides group and Lactobacillus gasseri subgroup had the largest negative and positive coefficients, respectively. As a linear regression model to predict stool frequencies showed that these bacteria were not associated with constipation, changes in these bacteria were unlikely to represent worsening of constipation in the course of progression of PD. In PD, the serum lipopolysaccharide (LPS)-binding protein levels were lower than controls, while the levels of serum diamine oxidase, a marker for intestinal mucosal integrity, remained unchanged in PD. Conclusions The permeability to LPS is likely to be increased without compromising the integrity of intestinal mucosa in PD. The increased intestinal permeability in PD may make the patients susceptible to intestinal dysbiosis. Conversely, intestinal dysbiosis may lead to the increased intestinal permeability. One or both of the two mechanisms may be operational in development and progression of PD.

361 citations

References
More filters
Journal ArticleDOI
TL;DR: A set of very simple estimators of efficiency are presented and illustrated with a variety of biological examples and a nomogram for predicting the necessary number of points when performing point counting is provided.
Abstract: The superior efficiency of systematic sampling at all levels in stereological studies is emphasized and various commonly used ways of implementing it are briefly described. Summarizing recent theoretical and experimental studies a set of very simple estimators of efficiency are presented and illustrated with a variety of biological examples. In particular, a nomogram for predicting the necessary number of points when performing point counting is provided. The very efficient and simple unbiased estimator of the volume of an arbitrary object based on Cavalieri's principle is dealt with in some detail. The efficiency of the systematic fractionating of an object is also illustrated.

3,396 citations

Journal ArticleDOI
01 Oct 1991-Brain
TL;DR: It is suggested that age-related attrition of pigmented nigral cells is not an important factor in the pathogenesis of Parkinson's disease and the regional selectivity of PD is relatively specific.
Abstract: The micro-architecture of the substantia nigra was studied in control cases of varying age and patients with parkinsonism. A single 7 mu section stained with haematoxylin and eosin was examined at a specific level within the caudal nigra using strict criteria. The pars compacta was divided into a ventral and a dorsal tier, and each tier was further subdivided into 3 regions. In 36 control cases there was a linear fallout of pigmented neurons with advancing age in the pars compacta of the caudal substantia nigra at a rate of 4.7% per decade. Regionally, the lateral ventral tier was relatively spared (2.1% loss per decade) compared with the medial ventral tier (5.4%) and the dorsal tier (6.9%). In 20 Parkinson's disease (PD) cases of varying disease duration there was an exponential loss of pigmented neurons with a 45% loss in the first decade. Regionally, the pattern was opposite to ageing. Loss was greatest in the lateral ventral tier (average loss 91%) followed by the medial ventral tier (71%) and the dorsal tier (56%). The presymptomatic phase of PD from the onset of neuronal loss was estimated to be about 5 yrs. This phase is represented by incidental Lewy body cases: individuals who die without clinical signs of PD or dementia, but who are found to have Lewy bodies at post-mortem. In 7 cases cell loss was confined to the lateral ventral tier (average loss 52%) congruent with the lateral ventral selectivity of symptomatic PD. It was calculated that at the onset of symptoms there was a 68% cell loss in the lateral ventral tier and a 48% loss in the caudal nigra as a whole. The regional selectivity of PD is relatively specific. In 15 cases of striatonigral degeneration the distribution of cell loss was similar, but the loss in the dorsal tier was greater than PD by 21%. In 14 cases of Steele-Richardson-Olszewski syndrome (SRO) there was no predilection for the lateral ventral tier, but a tendency to involve the medial nigra and spare the lateral. These findings suggest that age-related attrition of pigmented nigral cells is not an important factor in the pathogenesis of PD.

3,181 citations

Journal ArticleDOI
TL;DR: A clinical, morphological and neurochemical correlative study in patients with Parkinson's syndrome and Huntington's chorea is reported in this paper, where positive correlations can be established, within a certain range, between the severity of individual Parkinsonian symptoms (especially akinesia and tremor) and the degree, and also the site, of the disturbance of dopamine metabolism within the nuclei of the basal ganglia; and the sensitivity of the patients to levodopa's acute anti-akinesia effect.

2,395 citations

Journal ArticleDOI

2,232 citations