scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black

01 Feb 1991-Polymer Bulletin (Springer-Verlag)-Vol. 25, Iss: 2, pp 265-271
TL;DR: In this article, the authors studied the electrical conductivity of carbon black (CB) filled polymer blends and found that CB distribution is unevenly distributed in each component of the polymer blend, and that the filler distribution concentrates at interface of two polymers.
Abstract: Dispersion state of carbon black(CB) was studied in polymer blends which are incompatible with each other. It was found that CB distributes unevenly in each component of the polymer blend. There are two types of distribution. (1) One is almost predominantly distributed in one phase of the blend matrix, and in this phase fillers are relatively homogeneously distributed in the same manner as a single polymer composite. (2) In the second, the filler distribution concentrates at interface of two polymers. As long as the viscosities of two polymers are comparable, interfacial energy is the main factor determining uneven distribution of fillers in polymer blend matrices. This heterogeneous dispersion of conductive fillers has much effect on the electrical conductivity of CB filled polymer blends. The electrical conductivity of CB filled polymer blends is determined by two factors. One is concentration of CB in the filler rich phase and the other is phase continuity of this phase. These double percolations affect conductivity of conductive particle filled polymer blends.
Citations
More filters
Journal ArticleDOI
01 Jan 2009-Carbon
TL;DR: In this paper, a review of recent developments in carbon nanofiber (VGCNF)/polymer conductive composites is presented, and the most significant properties of their composites compared to those of VGCNF/polymer composites are discussed.

988 citations

Journal ArticleDOI
TL;DR: In this paper, the use of carbon black (CB) as a conductive filler in polymers and polymer blends is discussed. And several percolation models applicable to CB/polymer blends are reviewed.
Abstract: The objective of this article was to review the use of carbon black (CB) as a conductive filler in polymers and polymer blends. Important properties of CB related to its use in conducting polymers are discussed. The effects of polymer structure, molecular weight, surface tension, and processing conditions on electrical resistivity and physical properties of composites are discussed. Several percolation models applicable to CB/polymer blends are reviewed. Emphasis is placed on recent trends using polymer blends as the matrix to obtain conducting composites at a lower CB loading. A criterion for the distribution of CB in polymer blends is discussed. © 2002 Wiley Periodicals, Inc. Adv Polym Techn 21: 299–313, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.10025

765 citations

Journal ArticleDOI
21 Nov 2012-PLOS ONE
TL;DR: This advance in low-cost 3D printing with offer a new paradigm in the3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.
Abstract: 3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

681 citations

Journal ArticleDOI
TL;DR: In this article, the electrical conductivity of mixtures of conductive and insulating materials is reviewed and different models have been proposed aimed at the prediction of the conductivity or the percolation concentration.
Abstract: The electrical conductivity of mixtures of conductive and insulating materials is reviewed In general, the conductivity of such mixtures increases drastically at a certain concentration of the conductive component, the so-called percolation concentration Among the parameters influencing the percolation concentration, the filler distribution, filler shape, filler/matrix interactions and the processing technique are the most important ones On the basis of these parameters, different models have been proposed aimed at the prediction of the conductivity or the percolation concentration It will be shown here that statistical, geometric or thermodynamic models explain the conductivity behaviour of specific mixtures on the basis of insufficient assumptions However, the conductivity seems to be predictable with the help of structure-oriented models

651 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent advances in the fundamental understanding of polymer nanocomposites reinforced by nanofillers is presented, including the thermodynamics and kinetics of formation, molecular structure and dynamics, morphology, processing behaviors, and mechanical properties.

598 citations

References
More filters
Reference BookDOI
22 Nov 2017
TL;DR: In this paper, the surface tension and surface tension of polymers were calculated from contact angles by the Harmonic-Mean and Geometric-means methods. But the results of the analysis of the contact angles were limited.
Abstract: "Interfacial Thermodynamics Molecular Interpretations Interfacial and Surface Tensions of Polymer Melts and Liquids Contact Angles of Liquids on Solid Polymers Surface Tension and Polarity of Solid Polymers Wetting of High-Energy Surfaces Dynamic Contact Angles and Wetting Kinetics Experimental Methods for Contact Angles and Interfacial Tensions Modifications of Polymer Surfaces: Mechanisms of Wettability and Bondability Improvements Adhesion: Basic Concept and Locus of Failure Formation of Adhesive Bond Weak Boundary Layers Effect of Internal Stress and Bond Strength Fracture of Adhesive Bond Fundamentals of Fracture Mechanics Analysis and Testing of Adhesive Bonds Creep, Fatigue, and Environmental Effects Creep and Fatigue of Adhesive Joints Environmental Effects Appendix I: Calculation of Surface Tension and Its Non-polar and Polar Components from Contact Angles By the Harmonic-Mean and the Geometric-Mean Methods Appendix II: Unit Conversion Tables "

2,422 citations

Journal ArticleDOI
TL;DR: In this article, a large number of computer solutions of various types of resistor networks were presented, analogous to physical problems such as impurity conduction in lightly compensated semiconductors and variable-range hopping in amorphous semiconductor devices.
Abstract: In this paper we present a large number of computer solutions of various types of resistor networks. Some of these are analogous to physical problems such as impurity conduction in lightly compensated semiconductors and variable-range hopping in amorphous semiconductors. A significant extension of the standard relaxation techniques was required to implement these solutions. The results of these calculations are compared to percolation-model predictions based on concepts developed in the first paper of this series. A simple criterion is found for the applicability of the critical-percolation-path analysis to problems of this type and this is used to formulate an accurate prediction for the impurity-conduction case. Arguments based on percolation models are also given to show that the ${T}^{\ensuremath{-}\frac{1}{4}}$ and ${T}^{\ensuremath{-}\frac{1}{3}}$ dependence of ${log}_{10}\ensuremath{\sigma}$ often predicted for three-dimensional and two-dimensional variable-range hopping are indeed expected to be observed, and results on resistivity networks analogous to these problems are shown to be consistent with these arguments. Accurate empirical formulas are deduced from these computer calculations and we use them to analyze some recent data on films of $a$-Ge. Employing the results of the preceding paper, several experimental studies, and our computer models we have also examined the utility of the critical-volume-fraction rule of Sher and Zallen in solving various types of mixture conduction problems. We find that application of this rule is appropriate only in rather limited circumstances, and that in general a knowledge of the topological properties of these problems must be employed in finding the percolation threshold.

934 citations

Journal ArticleDOI
TL;DR: In this article, the electrical conductivity of carbon particle-filled polymers was measured as a function of carbon content to find a break point of the relationship between the carbon content and the conductivity.
Abstract: The electrical conductivity of carbon particle-filled polymers was measured as a function of carbon content to find a break point of the relationships between the carbon content and the conductivity. The conductivity jumps by as much as ten orders of magnitude at the break point. The critical carbon content corresponding to the break point varies depending on the polymer species and tends to increase with the increase in the surface tension of polymer. In order to explain the dependency of the critical carbon content on the polymer species, a simple equation was derived under some assumptions, the most important of which was that when the interfacial excess energy introduced by carbon particles into the polymer matrix reaches a “universal value”, Δg *, the carbon particles begin to coagulate so as to avoid any further increase of the energy and to form networks which facilitate electrical conduction. The equation well explains the dependency through surface tension, as long as the difference of the surface tensions between the carbon particles and the polymer is not very small.

435 citations

Journal ArticleDOI
TL;DR: In this article, the theory of infinite chains is used to predict the variation of conductivity with particle concentration, and the factors which determine the critical concentration are discussed, where the authors show that when conducting particles are added to a nonconducting matrix, conductivity increases abruptly at a critical concentration.
Abstract: When conducting particles are added to a nonconducting matrix, conductivity increases abruptly at a critical concentration. The theory of infinite chains is used to predict the variation of conductivity with particle concentration. Factors which determine the critical concentration are discussed.

169 citations

Journal ArticleDOI
TL;DR: By combining several volume percent of conducting particles in a semicrystalline matrix, a highly temperature-dependent resistivity is obtained as mentioned in this paper, where resistivity changes by several orders of magnitude in a small temperature interval centered on the crystal melting temperature.
Abstract: By combining several volume percent of conducting particles in a semicrystalline matrix, a highly temperature‐dependent resistivity is obtained. The resistivity changes by several orders of magnitude in a small temperature interval centered on the crystal melting temperature. Moreover, a typical resistivity changes by a factor of hundreds as the frequency changes from 102 to 104 Hz. Materials of this type show dielectric constants in excess of 103 which vary strongly with temperature and frequency.

168 citations