scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Disposable Sensors in Diagnostics, Food, and Environmental Monitoring.

TL;DR: A brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis.
Abstract: Disposable sensors are low-cost and easy-to-use sensing devices intended for short-term or rapid single-point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource-limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo- and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low-cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
05 Feb 2021-Sensors
TL;DR: A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal as mentioned in this paper, which can transform biological signals into electrochemical, electrical, optical, gravimetric, or acoustic signals.
Abstract: A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance ie, increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability) Furthermore, these nanomaterials can themselves act as transduction elements This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (eg, noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology

401 citations

Journal ArticleDOI
TL;DR: To achieve excellent NIR phosphors, a strategy of enhancing the crystallinity, modifying the micromorphology, and maintaining the valence state of Cr3+ in Ca3Sc2Si3O12 garnet (CSSG) is proposed, and the internal quantum efficiency (IQE) is greatly enhanced to 92.3%.
Abstract: Broadband near-infrared (NIR)-emitting phosphors are key for next-generation smart NIR light sources based on blue LEDs. To achieve excellent NIR phosphors, we propose a strategy of enhancing the crystallinity, modifying the micromorphology, and maintaining the valence state of Cr3+ in Ca3Sc2Si3O12 garnet (CSSG). By adding fluxes and sintering in a reducing atmosphere, the internal quantum efficiency (IQE) is greatly enhanced to 92.3%. The optimized CSSG:6%Cr3+ exhibits excellent thermal stability. At 150 °C, 97.4% of the NIR emission at room temperature can be maintained. The fabricated NIR-LED device emits a high optical power of 109.9 mW at 520 mA. The performances of both the achieved phosphor and the NIR-LED are almost the best results until now. The mechanism for the optimization is investigated. An application of the NIR-LED light source is demonstrated. A near-infrared light-emitting (NIR-LED) diode that emits high-power light could pave the way for the development of next-generation monitoring and detecting devices. Although solid-state NIR-LEDs are used in such devices, their narrow emission band limits their range of applications. Broadband NIR-emitting phosphor-converted LEDs offer the best solution. However, creating NIR phosphors that are sufficiently excited by blue light is challenging. Now, a team of Chinese and American researchers, led by Yongfu Liu from the Chinese Academy of Sciences, has created a NIR-LED that emits light in the 700–900 nm with an output of 109.9 mW at 520 mA after excitation with blue light. The device has the highest recorded power rating to date and could be used in applications from bioimaging and night-vision technologies, to monitoring food and medicines.

347 citations

Journal ArticleDOI
TL;DR: A specific and sensitive immunosensor for immunoglobulin detection produced against SARS-CoV-2 is developed and the proposed format was also extended to antigen detection, which presents new possibilities for diagnosing COVID-19.

318 citations


Cites background from "Disposable Sensors in Diagnostics, ..."

  • ...Unfortunately, there is no specific vaccine or drug yet available for this ongoing pandemic; therefore, massive diagnostic devices or biosensors are needed among the international community to reduce the number of undetected cases (Dincer et al., 2019; Peteu 2010; Xu 2016; Xu et al., 2019)....

    [...]

Journal ArticleDOI
TL;DR: This review provides general guidelines for both scientists in the biosensing research community and the biosensor industry to develop a highly sensitive and accurate point-of-care CO VID-19 detection system, which would be of enormous benefit for controlling the current COVID-19 pandemic.

295 citations

Journal ArticleDOI
TL;DR: This opinionated review critically discusses the state-of-the-art biosensing devices for COVID-19 testing and spot the urgent needs and highlight innovative diagnostic approaches for targeting various CO VID-19 related biomarkers.

233 citations

References
More filters
Journal ArticleDOI
07 Aug 1975-Nature
TL;DR: The derivation of a number of tissue culture cell lines which secrete anti-sheep red blood cell (SRBC) antibodies is described here, made by fusion of a mouse myeloma and mouse spleen cells from an immunised donor.
Abstract: THE manufacture of predefined specific antibodies by means of permanent tissue culture cell lines is of general interest. There are at present a considerable number of permanent cultures of myeloma cells1,2 and screening procedures have been used to reveal antibody activity in some of them. This, however, is not a satisfactory source of monoclonal antibodies of predefined specificity. We describe here the derivation of a number of tissue culture cell lines which secrete anti-sheep red blood cell (SRBC) antibodies. The cell lines are made by fusion of a mouse myeloma and mouse spleen cells from an immunised donor. To understand the expression and interactions of the Ig chains from the parental lines, fusion experiments between two known mouse myeloma lines were carried out.

19,053 citations

Journal ArticleDOI
TL;DR: The data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
Abstract: Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.

10,233 citations

Journal ArticleDOI
03 Aug 1990-Science
TL;DR: High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species.
Abstract: High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species. Multiple rounds exponentially enrich the population for the highest affinity species that can be clonally isolated and characterized. In particular one eight-base region of an RNA that interacts with the T4 DNA polymerase was chosen and randomized. Two different sequences were selected by this procedure from the calculated pool of 65,536 species. One is the wild-type sequence found in the bacteriophage mRNA; one is varied from wild type at four positions. The binding constants of these two RNA's to T4 DNA polymerase are equivalent. These protocols with minimal modification can yield high-affinity ligands for any protein that binds nucleic acids as part of its function; high-affinity ligands could conceivably be developed for any target molecule.

9,367 citations

Journal ArticleDOI
30 Aug 1990-Nature
TL;DR: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules.
Abstract: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules. Roughly one in 10(10) random sequence RNA molecules folds in such a way as to create a specific binding site for small ligands.

8,781 citations

Related Papers (5)