scispace - formally typeset
Search or ask a question

Distinctive Image Features from Scale-Invariant Keypoints

01 Jan 2011-
TL;DR: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images that can then be used to reliably match objects in diering images.
Abstract: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images. These features can then be used to reliably match objects in diering images. The algorithm was rst proposed by Lowe [12] and further developed to increase performance resulting in the classic paper [13] that served as foundation for SIFT which has played an important role in robotic and machine vision in the past decade.
Citations
More filters
Journal ArticleDOI
TL;DR: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis that facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system.
Abstract: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

43,540 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.
Abstract: The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.

15,935 citations

Proceedings ArticleDOI
06 Nov 2011
TL;DR: This paper proposes a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise, and demonstrates through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations.
Abstract: Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone.

8,702 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: A minor contribution, inspired by recent advances in large-scale image search, an unsupervised Bag-of-Words descriptor is proposed that yields competitive accuracy on VIPeR, CUHK03, and Market-1501 datasets, and is scalable on the large- scale 500k dataset.
Abstract: This paper contributes a new high quality dataset for person re-identification, named "Market-1501". Generally, current datasets: 1) are limited in scale, 2) consist of hand-drawn bboxes, which are unavailable under realistic settings, 3) have only one ground truth and one query image for each identity (close environment). To tackle these problems, the proposed Market-1501 dataset is featured in three aspects. First, it contains over 32,000 annotated bboxes, plus a distractor set of over 500K images, making it the largest person re-id dataset to date. Second, images in Market-1501 dataset are produced using the Deformable Part Model (DPM) as pedestrian detector. Third, our dataset is collected in an open system, where each identity has multiple images under each camera. As a minor contribution, inspired by recent advances in large-scale image search, this paper proposes an unsupervised Bag-of-Words descriptor. We view person re-identification as a special task of image search. In experiment, we show that the proposed descriptor yields competitive accuracy on VIPeR, CUHK03, and Market-1501 datasets, and is scalable on the large-scale 500k dataset.

3,564 citations


Cites methods from "Distinctive Image Features from Sca..."

  • ...On the other hand, the field of image search has been greatly advanced since the introduction of the SIFT descriptor [24] and the BoW model....

    [...]

Proceedings ArticleDOI
25 Oct 2010
TL;DR: VLFeat is an open and portable library of computer vision algorithms that includes rigorous implementations of common building blocks such as feature detectors, feature extractors, (hierarchical) k-means clustering, randomized kd-tree matching, and super-pixelization.
Abstract: VLFeat is an open and portable library of computer vision algorithms. It aims at facilitating fast prototyping and reproducible research for computer vision scientists and students. It includes rigorous implementations of common building blocks such as feature detectors, feature extractors, (hierarchical) k-means clustering, randomized kd-tree matching, and super-pixelization. The source code and interfaces are fully documented. The library integrates directly with MATLAB, a popular language for computer vision research.

3,417 citations


Cites methods from "Distinctive Image Features from Sca..."

  • ...The Scale Invariant Feature Transform (SIFT) [8, 9] is probably...

    [...]

References
More filters
Book
12 Jan 1993

163 citations

01 Jan 1997
TL;DR: Nearest-neighbor correlation-based similarity computation in the space of outputs of complex-type receptive fields can support robust recognition of 3D objects and has interesting implications for the design of a front end to an artificial object recognition system and the understanding of the faculty of object recognition in primate vision.
Abstract: Nearest-neighbor correlation-based similarity computation in the space of outputs of complex-type receptive fields can support robust recognition of 3D objects. Our experiments with four collections of objects resulted in mean recognition rates between 84% (for subordinate-level discrimination among 15 quadruped animal shapes) and 94% (for basic-level recognition of 20 everyday objects), over a 40deg X 40deg range of viewpoints, centered on a stored canonical view and related to it by rotations in depth (comparable figures were obtained for image-plane translations). This result has interesting implications for the design of a front end to an artificial object recognition system, and for the understanding of the faculty of object recognition in primate vision.

110 citations

Journal ArticleDOI
TL;DR: This work describes how to model the appearance of a 3-D object using multiple views, learn such a model from training images, and use the model for object recognition, and demonstrates that OLIVER is capable of learning to recognize complex objects in cluttered images, while acquiring models that represent those objects using relatively few views.
Abstract: We describe how to model the appearance of a 3-D object using multiple views, learn such a model from training images, and use the model for object recognition. The model uses probability distributions to describe the range of possible variation in the object's appearance. These distributions are organized on two levels. Large variations are handled by partitioning training images into clusters corresponding to distinctly different views of the object. Within each cluster, smaller variations are represented by distributions characterizing uncertainty in the presence, position, and measurements of various discrete features of appearance. Many types of features are used, ranging in abstraction from edge segments to perceptual groupings and regions. A matching procedure uses the feature uncertainty information to guide the search for a match between model and image. Hypothesized feature pairings are used to estimate a viewpoint transformation taking account of feature uncertainty. These methods have been implemented in an object recognition system, OLIVER. Experiments show that OLIVER is capable of learning to recognize complex objects in cluttered images, while acquiring models that represent those objects using relatively few views.

108 citations

Book ChapterDOI
28 May 2002
TL;DR: The results show that the phase-based local feature leads to better performance when dealing with common illumination changes and 2-D rotation, while giving comparable effects in terms of scale changes.
Abstract: We introduce a new type of local feature based on the phase and amplitude responses of complex-valued steerable filters. The design of this local feature is motivated by a desire to obtain feature vectors which are semi-invariant under common image deformations, yet distinctive enough to provide useful identity information. A recent proposal for such local features involves combining differential invariants to particular image deformations, such as rotation. Our approach differs in that we consider a wider class of image deformations, including the addition of noise, along with both global and local brightness variations. We use steerable filters to make the feature robust to rotation. And we exploit the fact that phase data is often locally stable with respect to scale changes, noise, and common brightness changes. We provide empirical results comparing our local feature with one based on differential invariants. The results show that our phase-based local feature leads to better performance when dealing with common illumination changes and 2-D rotation, while giving comparable effects in terms of scale changes.

102 citations

Journal ArticleDOI
TL;DR: An appearance-based 3-D object recognition system that avoids some of the problems of previous appearance- based schemes is described and a protocol that permits performance in the presence of quantifiable amounts of clutter and occlusion to be predicted on the basis of simple score statistics derived from clean test images and pure clutter images is established.

70 citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.