scispace - formally typeset
Search or ask a question
Journal Articleā€¢DOIā€¢

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject toĀ copyrightĀ Ā Ā  Report

Citations
More filters
Proceedings Articleā€¢DOIā€¢
26 Dec 2007
TL;DR: This work proposes a solution to the problem of scene summarization by examining the distribution of images in the collection to select a set of canonical views to form the scene summary, using clustering techniques on visual features.
Abstract: We formulate the problem of scene summarization as selecting a set of images that efficiently represents the visual content of a given scene. The ideal summary presents the most interesting and important aspects of the scene with minimal redundancy. We propose a solution to this problem using multi-user image collections from the Internet. Our solution examines the distribution of images in the collection to select a set of canonical views to form the scene summary, using clustering techniques on visual features. The summaries we compute also lend themselves naturally to the browsing of image collections, and can be augmented by analyzing user-specified image tag data. We demonstrate the approach using a collection of images of the city of Rome, showing the ability to automatically decompose the images into separate scenes, and identify canonical views for each scene.

413Ā citations

Journal Articleā€¢DOIā€¢
08 Oct 2015-PLOS ONE
TL;DR: The augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types.
Abstract: Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

412Ā citations

Proceedings Articleā€¢DOIā€¢
07 Dec 2015
TL;DR: A novel multi-view subspace clustering method that performs clustering on the subspace representation of each view simultaneously and proposes to use a common cluster structure to guarantee the consistence among different views.
Abstract: For many computer vision applications, the data sets distribute on certain low-dimensional subspaces. Subspace clustering is to find such underlying subspaces and cluster the data points correctly. In this paper, we propose a novel multi-view subspace clustering method. The proposed method performs clustering on the subspace representation of each view simultaneously. Meanwhile, we propose to use a common cluster structure to guarantee the consistence among different views. In addition, an efficient algorithm is proposed to solve the problem. Experiments on four benchmark data sets have been performed to validate our proposed method. The promising results demonstrate the effectiveness of our method.

412Ā citations

Proceedings Articleā€¢DOIā€¢
Zuxuan Wu1, Xi Wang1, Yu-Gang Jiang1, Hao Ye1, Xiangyang Xue1Ā ā€¢
13 Oct 2015
TL;DR: Wang et al. as discussed by the authors proposed a hybrid deep learning framework for video classification, which is able to model static spatial information, short-term motion, as well as long-term temporal clues in the videos.
Abstract: Classifying videos according to content semantics is an important problem with a wide range of applications. In this paper, we propose a hybrid deep learning framework for video classification, which is able to model static spatial information, short-term motion, as well as long-term temporal clues in the videos. Specifically, the spatial and the short-term motion features are extracted separately by two Convolutional Neural Networks (CNN). These two types of CNN-based features are then combined in a regularized feature fusion network for classification, which is able to learn and utilize feature relationships for improved performance. In addition, Long Short Term Memory (LSTM) networks are applied on top of the two features to further model longer-term temporal clues. The main contribution of this work is the hybrid learning framework that can model several important aspects of the video data. We also show that (1) combining the spatial and the short-term motion features in the regularized fusion network is better than direct classification and fusion using the CNN with a softmax layer, and (2) the sequence-based LSTM is highly complementary to the traditional classification strategy without considering the temporal frame orders. Extensive experiments are conducted on two popular and challenging benchmarks, the UCF-101 Human Actions and the Columbia Consumer Videos (CCV). On both benchmarks, our framework achieves very competitive performance: 91.3% on the UCF-101 and 83.5% on the CCV.

411Ā citations

Proceedings Articleā€¢DOIā€¢
01 Oct 2017
TL;DR: Deep Adaptive Clustering (DAC) is proposed that recasts the clustering problem into a binary pairwise-classification framework to judge whether pairs of images belong to the same clusters to overcome the main challenge, the ground-truth similarities are unknown in image clustering.
Abstract: Image clustering is a crucial but challenging task in machine learning and computer vision. Existing methods often ignore the combination between feature learning and clustering. To tackle this problem, we propose Deep Adaptive Clustering (DAC) that recasts the clustering problem into a binary pairwise-classification framework to judge whether pairs of images belong to the same clusters. In DAC, the similarities are calculated as the cosine distance between label features of images which are generated by a deep convolutional network (ConvNet). By introducing a constraint into DAC, the learned label features tend to be one-hot vectors that can be utilized for clustering images. The main challenge is that the ground-truth similarities are unknown in image clustering. We handle this issue by presenting an alternating iterative Adaptive Learning algorithm where each iteration alternately selects labeled samples and trains the ConvNet. Conclusively, images are automatically clustered based on the label features. Experimental results show that DAC achieves state-of-the-art performance on five popular datasets, e.g., yielding 97.75% clustering accuracy on MNIST, 52.18% on CIFAR-10 and 46.99% on STL-10.

411Ā citations

References
More filters
Proceedings Articleā€¢DOIā€¢
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989Ā citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, Ļƒ ), which can be computed from the difference of two nearby scales separated by a constant multiplicativeā€¦...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Bookā€¢
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558Ā citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282Ā citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings Articleā€¢DOIā€¢
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993Ā citations

Journal Articleā€¢DOIā€¢
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422Ā citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.