scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work applies the Laplacian sparse coding to feature quantization in Bag-of-Words image representation, and it outperforms sparse coding and achieves good performance in solving the image classification problem and is successfully used to solve the semi-auto image tagging problem.
Abstract: Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework. By incorporating the similarity preserving term into the objective of sparse coding, our proposed Laplacian sparse coding can alleviate the instability of sparse codes. Furthermore, we propose a Hypergraph Laplacian sparse coding (HLSc), which extends our Laplacian sparse coding to the case where the similarity among the instances defined by a hypergraph. Specifically, this HLSc captures the similarity among the instances within the same hyperedge simultaneously, and also makes the sparse codes of them be similar to each other. Both Laplacian sparse coding and Hypergraph Laplacian sparse coding enhance the robustness of sparse coding. We apply the Laplacian sparse coding to feature quantization in Bag-of-Words image representation, and it outperforms sparse coding and achieves good performance in solving the image classification problem. The Hypergraph Laplacian sparse coding is also successfully used to solve the semi-auto image tagging problem. The good performance of these applications demonstrates the effectiveness of our proposed formulations in locality and similarity preservation.

366 citations

Proceedings ArticleDOI
18 Apr 2005
TL;DR: The algorithm is vision-and odometry-based, and enables low-cost navigation in cluttered and populated environments, and satisfactorily handles dynamic changes in the environment, for example, lighting changes, moving objects and/or people.
Abstract: This paper presents the Visual Simultaneous Localization and Mapping (vSLAMTM) algorithm, a novel algorithm for simultaneous localization and mapping (SLAM). The algorithm is vision-and odometry-based, and enables low-cost navigation in cluttered and populated environments. No initial map is required, and it satisfactorily handles dynamic changes in the environment, for example, lighting changes, moving objects and/or people. Typically, vSLAM recovers quickly from dramatic disturbances, such as “kidnapping”.

365 citations

Journal ArticleDOI
01 Aug 2008
TL;DR: A system including a novel component called programmable aperture and two associated post-processing algorithms for high-quality light field acquisition and the effectiveness of the system and the quality of the captured light field is presented.
Abstract: In this paper, we present a system including a novel component called programmable aperture and two associated post-processing algorithms for high-quality light field acquisition. The shape of the programmable aperture can be adjusted and used to capture light field at full sensor resolution through multiple exposures without any additional optics and without moving the camera. High acquisition efficiency is achieved by employing an optimal multiplexing scheme, and quality data is obtained by using the two post-processing algorithms designed for self calibration of photometric distortion and for multi-view depth estimation. View-dependent depth maps thus generated help boost the angular resolution of light field. Various post-exposure photographic effects are given to demonstrate the effectiveness of the system and the quality of the captured light field.

364 citations


Cites methods from "Distinctive Image Features from Sca..."

  • ...For an input I u, we first use the SIFT method, which is well immune to local photometric distortions [Lowe 2004], to detect the feature points and find their valid matches in I0 (Figures 6 (b) and (c))....

    [...]

01 May 2006
TL;DR: Novel implementations of the KLT feature track- ing and SIFT feature extraction algorithms that run on the graphics processing unit (GPU) and is suitable for video analysis in real-time vision systems.
Abstract: This paper describes novel implementations of the KLT feature track- ing and SIFT feature extraction algorithms that run on the graphics processing unit (GPU) and is suitable for video analysis in real-time vision systems. While significant acceleration over standard CPU implementations is obtained by ex- ploiting parallelism provided by modern programmable graphics hardware, the CPU is freed up to run other computations in parallel. Our GPU-based KLT im- plementation tracks about a thousand features in real-time at 30 Hz on 1024 £ 768 resolution video which is a 20 times improvement over the CPU. It works on both ATI and NVIDIA graphics cards. The GPU-based SIFT implementation works on NVIDIA cards and extracts about 800 features from 640 £ 480 video at 10Hz which is approximately 10 times faster than an optimized CPU implementation.

364 citations

Proceedings ArticleDOI
04 May 2014
TL;DR: In this article, the authors used multiple instance learning (MIL) framework in classification training with deep learning features and found that automatic feature learning outperformed manual feature learning and achieved performance that's close to fully supervised approach.
Abstract: This paper studies the effectiveness of accomplishing high-level tasks with a minimum of manual annotation and good feature representations for medical images. In medical image analysis, objects like cells are characterized by significant clinical features. Previously developed features like SIFT and HARR are unable to comprehensively represent such objects. Therefore, feature representation is especially important. In this paper, we study automatic extraction of feature representation through deep learning (DNN). Furthermore, detailed annotation of objects is often an ambiguous and challenging task. We use multiple instance learning (MIL) framework in classification training with deep learning features. Several interesting conclusions can be drawn from our work: (1) automatic feature learning outperforms manual feature; (2) the unsupervised approach can achieve performance that's close to fully supervised approach (93.56%) vs. (94.52%); and (3) the MIL performance of coarse label (96.30%) outweighs the supervised performance of fine label (95.40%) in supervised deep learning features.

363 citations

References
More filters
Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ ), which can be computed from the difference of two nearby scales separated by a constant multiplicative…...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings ArticleDOI
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993 citations

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422 citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.