scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
17 Oct 2005
TL;DR: Applied to a database of images of isolated objects, the sharing of parts among objects improves detection accuracy when few training examples are available and this hierarchical probabilistic model is extended to scenes containing multiple objects.
Abstract: We describe a hierarchical probabilistic model for the detection and recognition of objects in cluttered, natural scenes. The model is based on a set of parts which describe the expected appearance and position, in an object centered coordinate frame, of features detected by a low-level interest operator. Each object category then has its own distribution over these parts, which are shared between objects. We learn the parameters of this model via a Gibbs sampler which uses the graphical model's structure to analytically average over many parameters. Applied to a database of images of isolated objects, the sharing of parts among objects improves detection accuracy when few training examples are available. We also extend this hierarchical framework to scenes containing multiple objects

358 citations


Cites methods from "Distinctive Image Features from Sca..."

  • ...From Images to Features Following [17], we represent each of our M grayscale training images by a set of SIFT descriptors [13] computed on affine covariant regions....

    [...]

Journal ArticleDOI
TL;DR: A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images, and Random sampling is introduced into the H FR framework to better handle challenges arising from the small sample size problem.
Abstract: Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g., forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed sketch to photograph, and 4) forensic sketch to photograph.

358 citations

Proceedings Article
21 Jun 2010
TL;DR: This paper proposes a novel data-dependent projection learning method such that each hash function is designed to correct the errors made by the previous one sequentially, and shows significant performance gains over the state-of-the-art methods on two large datasets containing up to 1 million points.
Abstract: Hashing based Approximate Nearest Neighbor (ANN) search has attracted much attention due to its fast query time and drastically reduced storage. However, most of the hashing methods either use random projections or extract principal directions from the data to derive hash functions. The resulting embedding suffers from poor discrimination when compact codes are used. In this paper, we propose a novel data-dependent projection learning method such that each hash function is designed to correct the errors made by the previous one sequentially. The proposed method easily adapts to both unsupervised and semi-supervised scenarios and shows significant performance gains over the state-of-the-art methods on two large datasets containing up to 1 million points.

357 citations


Cites background from "Distinctive Image Features from Sca..."

  • ...It contains 1 million local SIFT descriptors extracted from random images (Lowe, 2004)....

    [...]

Journal ArticleDOI
TL;DR: The thesis is that multimodal sentiment analysis holds a significant untapped potential with the arrival of complementary data streams for improving and going beyond text-based sentiment analysis.

357 citations

Journal ArticleDOI
TL;DR: Frequency analysis allows for greater accuracy in the removal of dynamic weather and in the performance of feature extraction than previous pixel-based or patch-based methods and is effective for videos with both scene and camera motions.
Abstract: Dynamic weather such as rain and snow causes complex spatio-temporal intensity fluctuations in videos. Such fluctuations can adversely impact vision systems that rely on small image features for tracking, object detection and recognition. While these effects appear to be chaotic in space and time, we show that dynamic weather has a predictable global effect in frequency space. For this, we first develop a model of the shape and appearance of a single rain or snow streak in image space. Detecting individual streaks is difficult even with an accurate appearance model, so we combine the streak model with the statistical characteristics of rain and snow to create a model of the overall effect of dynamic weather in frequency space. Our model is then fit to a video and is used to detect rain or snow streaks first in frequency space, and the detection result is then transferred to image space. Once detected, the amount of rain or snow can be reduced or increased. We demonstrate that our frequency analysis allows for greater accuracy in the removal of dynamic weather and in the performance of feature extraction than previous pixel-based or patch-based methods. We also show that unlike previous techniques, our approach is effective for videos with both scene and camera motions.

357 citations

References
More filters
Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ ), which can be computed from the difference of two nearby scales separated by a constant multiplicative…...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings ArticleDOI
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993 citations

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422 citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.