scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work develops the first full-reference image quality model with explicit tolerance to texture resampling, using a convolutional neural network to construct an injective and differentiable function that transforms images to multi-scale overcomplete representations.
Abstract: Objective measures of image quality generally operate by making local comparisons of pixels of a "degraded" image to those of the original. Relative to human observers, these measures are overly sensitive to resampling of texture regions (e.g., replacing one patch of grass with another). Here we develop the first full-reference image quality model with explicit tolerance to texture resampling. Using a convolutional neural network, we construct an injective and differentiable function that transforms images to a multi-scale overcomplete representation. We empirically show that the spatial averages of the feature maps in this representation capture texture appearance, in that they provide a set of sufficient statistical constraints to synthesize a wide variety of texture patterns. We then describe an image quality method that combines correlation of these spatial averages ("texture similarity'') with correlation of the feature maps ("structure similarity''). The parameters of the proposed measure are jointly optimized to match human ratings of image quality, while minimizing the reported distances between subimages cropped from the same texture images. Experiments show that the optimized method explains human perceptual scores, both on conventional image quality databases and texture databases. The measure also offers competitive performance on texture classification and retrieval, and show the robustness to geometric transformations. Code is available at https://github.com/dingkeyan93/DISTS.

324 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: This work addresses the problem of localizing and estimating the fine-pose of objects in the image with exact 3D models by using local keypoint detectors to find candidate poses and score global alignment of each candidate pose to the image.
Abstract: We address the problem of localizing and estimating the fine-pose of objects in the image with exact 3D models. Our main focus is to unify contributions from the 1970s with recent advances in object detection: use local keypoint detectors to find candidate poses and score global alignment of each candidate pose to the image. Moreover, we also provide a new dataset containing fine-aligned objects with their exactly matched 3D models, and a set of models for widely used objects. We also evaluate our algorithm both on object detection and fine pose estimation, and show that our method outperforms state-of-the art algorithms.

323 citations

Journal ArticleDOI
TL;DR: This paper explores the key role of image content in the task of automatic news verification on microblogs and proposes several visual and statistical features to characterize these patterns visually and statistically for detecting fake news.
Abstract: Microblog has been a popular media platform for reporting and propagating news. However, fake news spreading on microblogs would severely jeopardize its public credibility. To identify the truthfulness of news on microblogs, images are very crucial content. In this paper, we explore the key role of image content in the task of automatic news verification on microblogs. Existing approaches to news verification depend on features extracted mainly from the text content of news tweets, while image features for news verification are often ignored. According to our study, however, images are very popular and have a great influence on microblogs news propagation. In addition, fake and real news events have different image distribution patterns. Therefore, we propose several visual and statistical features to characterize these patterns visually and statistically for detecting fake news. Experiments on a real-world multimedia dataset collected from Sina Weibo validate the effectiveness of our proposed image features. The news verification performance of our method outperforms baseline methods. To the best of our knowledge, this is the first attempt that systematically explores image features on news verification task.

323 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: Experimental results show the proposed CNN+LSTM architecture for camera pose regression for indoor and outdoor scenes outperforms existing deep architectures, and can localize images in hard conditions, where classic SIFT-based methods fail.
Abstract: In this work we propose a new CNN+LSTM architecture for camera pose regression for indoor and outdoor scenes. CNNs allow us to learn suitable feature representations for localization that are robust against motion blur and illumination changes. We make use of LSTM units on the CNN output, which play the role of a structured dimensionality reduction on the feature vector, leading to drastic improvements in localization performance. We provide extensive quantitative comparison of CNN-based and SIFT-based localization methods, showing the weaknesses and strengths of each. Furthermore, we present a new large-scale indoor dataset with accurate ground truth from a laser scanner. Experimental results on both indoor and outdoor public datasets show our method outperforms existing deep architectures, and can localize images in hard conditions, e.g., in the presence of mostly textureless surfaces, where classic SIFT-based methods fail.

322 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This work proposes a novel method for learning discretized local geometry representation based on minimization of average reprojection error in the space of ellipses and shows that if the gravity vector assumption is used consistently from the feature description to spatial verification, it improves retrieval performance and decreases the memory footprint.
Abstract: State of the art methods for image and object retrieval exploit both appearance (via visual words) and local geometry (spatial extent, relative pose). In large scale problems, memory becomes a limiting factor - local geometry is stored for each feature detected in each image and requires storage larger than the inverted file and term frequency and inverted document frequency weights together. We propose a novel method for learning discretized local geometry representation based on minimization of average reprojection error in the space of ellipses. The representation requires only 24 bits per feature without drop in performance. Additionally, we show that if the gravity vector assumption is used consistently from the feature description to spatial verification, it improves retrieval performance and decreases the memory footprint. The proposed method outperforms state of the art retrieval algorithms in a standard image retrieval benchmark.

322 citations

References
More filters
Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ ), which can be computed from the difference of two nearby scales separated by a constant multiplicative…...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings ArticleDOI
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993 citations

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422 citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.