scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
20 Jun 2011
TL;DR: This paper proposes a novel approach to unsupervised integrate such heterogeneous features by performing multi-modal spectral clustering on unlabeled images and unsegmented images using a commonly shared graph Laplacian matrix.
Abstract: In recent years, more and more visual descriptors have been proposed to describe objects and scenes appearing in images. Different features describe different aspects of the visual characteristics. How to combine these heterogeneous features has become an increasing critical problem. In this paper, we propose a novel approach to unsupervised integrate such heterogeneous features by performing multi-modal spectral clustering on unlabeled images and unsegmented images. Considering each type of feature as one modal, our new multi-modal spectral clustering (MMSC) algorithm is to learn a commonly shared graph Laplacian matrix by unifying different modals (image features). A non-negative relaxation is also added in our method to improve the robustness and efficiency of image clustering. We applied our MMSC method to integrate five types of popularly used image features, including SIFT, HOG, GIST, LBP, CENTRIST and evaluated the performance by two benchmark data sets: Caltech-101 and MSRC-v1. Compared with existing unsupervised scene and object categorization methods, our approach always achieves superior performances measured by three standard clustering evaluation metrices.

242 citations

Proceedings ArticleDOI
20 Jun 2011
TL;DR: This paper introduces a smoothly varying affine stitching field which is flexible enough to handle parallax while retaining the good extrapolation and occlusion handling properties of parametric transforms.
Abstract: Traditional image stitching using parametric transforms such as homography, only produces perceptually correct composites for planar scenes or parallax free camera motion between source frames. This limits mosaicing to source images taken from the same physical location. In this paper, we introduce a smoothly varying affine stitching field which is flexible enough to handle parallax while retaining the good extrapolation and occlusion handling properties of parametric transforms. Our algorithm which jointly estimates both the stitching field and correspondence, permits the stitching of general motion source images, provided the scenes do not contain abrupt protrusions.

242 citations

Posted Content
TL;DR: The results indicate that the problem of insuring invariance to small image transformations in neural networks while preserving high accuracy remains unsolved.
Abstract: Convolutional Neural Networks (CNNs) are commonly assumed to be invariant to small image transformations: either because of the convolutional architecture or because they were trained using data augmentation. Recently, several authors have shown that this is not the case: small translations or rescalings of the input image can drastically change the network's prediction. In this paper, we quantify this phenomena and ask why neither the convolutional architecture nor data augmentation are sufficient to achieve the desired invariance. Specifically, we show that the convolutional architecture does not give invariance since architectures ignore the classical sampling theorem, and data augmentation does not give invariance because the CNNs learn to be invariant to transformations only for images that are very similar to typical images from the training set. We discuss two possible solutions to this problem: (1) antialiasing the intermediate representations and (2) increasing data augmentation and show that they provide only a partial solution at best. Taken together, our results indicate that the problem of insuring invariance to small image transformations in neural networks while preserving high accuracy remains unsolved.

241 citations

Proceedings ArticleDOI
21 Oct 2013
TL;DR: Focusing on VLAD without loss of generality, it is shown that ad-hoc choices are implicitly done which are not desirable, and several steps of the original design are modified, which significantly improve VLADS and make it compare favorably against the state of the art.
Abstract: Recent works on image retrieval have proposed to index images by compact representations encoding powerful local descriptors, such as the closely related VLAD and Fisher vector. By combining such a representation with a suitable coding technique, it is possible to encode an image in a few dozen bytes while achieving excellent retrieval results. This paper revisits some assumptions proposed in this context regarding the handling of "visual burstiness", and shows that ad-hoc choices are implicitly done which are not desirable. Focusing on VLAD without loss of generality, we propose to modify several steps of the original design. Albeit simple, these modifications significantly improve VLAD and make it compare favorably against the state of the art.

241 citations


Cites background or methods from "Distinctive Image Features from Sca..."

  • ...It consists first in describing an image by a collection of local descriptors such as SIFTs [10], and then in aggregating these into a single vector that collects the statistics of so-called ”visual words”....

    [...]

  • ...They have been extracted with the Hessian-affine detector [11] and described by SIFT [10]....

    [...]

Proceedings ArticleDOI
12 Dec 2011
TL;DR: A recent public experiment that shows two robots making pancakes using web instructions and the potential of the underlying technologies as well as the research challenges raised by the experiment are discussed.
Abstract: In this paper we report on a recent public experiment that shows two robots making pancakes using web instructions. In the experiment, the robots retrieve instructions for making pancakes from the World Wide Web and generate robot action plans from the instructions. This task is jointly performed by two autonomous robots: The first robot opens and closes cupboards and drawers, takes a pancake mix from the refrigerator, and hands it to the robot B. The second robot cooks and flips the pancakes, and then delivers them back to the first robot. While the robot plans in the scenario are all percept-guided, they are also limited in different ways and rely on manually implemented sub-plans for parts of the task. We will thus discuss the potential of the underlying technologies as well as the research challenges raised by the experiment.

241 citations

References
More filters
Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ ), which can be computed from the difference of two nearby scales separated by a constant multiplicative…...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings ArticleDOI
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993 citations

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422 citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.