scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
07 Dec 2015
TL;DR: This paper uses Convolutional Neural Networks to learn discriminant patch representations and in particular train a Siamese network with pairs of (non-)corresponding patches to develop 128-D descriptors whose euclidean distances reflect patch similarity and can be used as a drop-in replacement for any task involving SIFT.
Abstract: Deep learning has revolutionalized image-level tasks such as classification, but patch-level tasks, such as correspondence, still rely on hand-crafted features, e.g. SIFT. In this paper we use Convolutional Neural Networks (CNNs) to learn discriminant patch representations and in particular train a Siamese network with pairs of (non-)corresponding patches. We deal with the large number of potential pairs with the combination of a stochastic sampling of the training set and an aggressive mining strategy biased towards patches that are hard to classify. By using the L2 distance during both training and testing we develop 128-D descriptors whose euclidean distances reflect patch similarity, and which can be used as a drop-in replacement for any task involving SIFT. We demonstrate consistent performance gains over the state of the art, and generalize well against scaling and rotation, perspective transformation, non-rigid deformation, and illumination changes. Our descriptors are efficient to compute and amenable to modern GPUs, and are publicly available.

848 citations

Book ChapterDOI
07 May 2006
TL;DR: The classification performance under changes in the visual vocabulary and number of latent topics learnt is investigated, and a novel vocabulary using colour SIFT descriptors is developed using probabilistic Latent Semantic Analysis.
Abstract: Given a set of images of scenes containing multiple object categories (e.g. grass, roads, buildings) our objective is to discover these objects in each image in an unsupervised manner, and to use this object distribution to perform scene classification. We achieve this discovery using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature, here applied to a bag of visual words representation for each image. The scene classification on the object distribution is carried out by a k-nearest neighbour classifier. We investigate the classification performance under changes in the visual vocabulary and number of latent topics learnt, and develop a novel vocabulary using colour SIFT descriptors. Classification performance is compared to the supervised approaches of Vogel & Schiele [19] and Oliva & Torralba [11], and the semi-supervised approach of Fei Fei & Perona [3] using their own datasets and testing protocols. In all cases the combination of (unsupervised) pLSA followed by (supervised) nearest neighbour classification achieves superior results. We show applications of this method to image retrieval with relevance feedback and to scene classification in videos.

846 citations

Journal ArticleDOI
TL;DR: A keypoint-based approach is developed that is effective in this context by formulating wide-baseline matching of keypoints extracted from the input images to those found in the model images as a classification problem, which shifts much of the computational burden to a training phase, without sacrificing recognition performance.
Abstract: In many 3D object-detection and pose-estimation problems, runtime performance is of critical importance. However, there usually is time to train the system, which we would show to be very useful. Assuming that several registered images of the target object are available, we developed a keypoint-based approach that is effective in this context by formulating wide-baseline matching of keypoints extracted from the input images to those found in the model images as a classification problem. This shifts much of the computational burden to a training phase, without sacrificing recognition performance. As a result, the resulting algorithm is robust, accurate, and fast-enough for frame-rate performance. This reduction in runtime computational complexity is our first contribution. Our second contribution is to show that, in this context, a simple and fast keypoint detector suffices to support detection and tracking even under large perspective and scale variations. While earlier methods require a detector that can be expected to produce very repeatable results, in general, which usually is very time-consuming, we simply find the most repeatable object keypoints for the specific target object during the training phase. We have incorporated these ideas into a real-time system that detects planar, nonplanar, and deformable objects. It then estimates the pose of the rigid ones and the deformations of the others

843 citations


Cites background or methods or result from "Distinctive Image Features from Sca..."

  • ...Note that by contrast with [ 15 ], we do not require a particularly...

    [...]

  • ...As was done in [20], [ 15 ], we look for extrema...

    [...]

  • ...We compared our results with those obtained using the executable that implements the SIFT method [ 15 ] kindly provided by David Lowe....

    [...]

  • ...If training is possible, as suggested in [ 15 ] and demonstrated in [25],...

    [...]

  • ...Among these, the SIFT descriptor [ 15 ] has been shown to be one of the most effective [20]....

    [...]

Proceedings ArticleDOI
23 Jun 2008
TL;DR: The goal is to develop efficient image search and scene matching techniques that are not only fast, but also require very little memory, enabling their use on standard hardware or even on handheld devices.
Abstract: The Internet contains billions of images, freely available online. Methods for efficiently searching this incredibly rich resource are vital for a large number of applications. These include object recognition, computer graphics, personal photo collections, online image search tools. In this paper, our goal is to develop efficient image search and scene matching techniques that are not only fast, but also require very little memory, enabling their use on standard hardware or even on handheld devices. Our approach uses recently developed machine learning techniques to convert the Gist descriptor (a real valued vector that describes orientation energies at different scales and orientations within an image) to a compact binary code, with a few hundred bits per image. Using our scheme, it is possible to perform real-time searches with millions from the Internet using a single large PC and obtain recognition results comparable to the full descriptor. Using our codes on high quality labeled images from the LabelMe database gives surprisingly powerful recognition results using simple nearest neighbor techniques.

839 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive survey of the learning to hash algorithms is presented, categorizing them according to the manners of preserving the similarities into: pairwise similarity preserving, multi-wise similarity preservation, implicit similarity preserving and quantization, and discuss their relations.
Abstract: Nearest neighbor search is a problem of finding the data points from the database such that the distances from them to the query point are the smallest. Learning to hash is one of the major solutions to this problem and has been widely studied recently. In this paper, we present a comprehensive survey of the learning to hash algorithms, categorize them according to the manners of preserving the similarities into: pairwise similarity preserving, multiwise similarity preserving, implicit similarity preserving, as well as quantization, and discuss their relations. We separate quantization from pairwise similarity preserving as the objective function is very different though quantization, as we show, can be derived from preserving the pairwise similarities. In addition, we present the evaluation protocols, and the general performance analysis, and point out that the quantization algorithms perform superiorly in terms of search accuracy, search time cost, and space cost. Finally, we introduce a few emerging topics.

838 citations

References
More filters
Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ ), which can be computed from the difference of two nearby scales separated by a constant multiplicative…...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings ArticleDOI
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993 citations

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422 citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.