scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This survey introduces feature detection, description, and matching techniques from handcrafted methods to trainable ones and provides an analysis of the development of these methods in theory and practice, and briefly introduces several typical image matching-based applications.
Abstract: As a fundamental and critical task in various visual applications, image matching can identify then correspond the same or similar structure/content from two or more images. Over the past decades, growing amount and diversity of methods have been proposed for image matching, particularly with the development of deep learning techniques over the recent years. However, it may leave several open questions about which method would be a suitable choice for specific applications with respect to different scenarios and task requirements and how to design better image matching methods with superior performance in accuracy, robustness and efficiency. This encourages us to conduct a comprehensive and systematic review and analysis for those classical and latest techniques. Following the feature-based image matching pipeline, we first introduce feature detection, description, and matching techniques from handcrafted methods to trainable ones and provide an analysis of the development of these methods in theory and practice. Secondly, we briefly introduce several typical image matching-based applications for a comprehensive understanding of the significance of image matching. In addition, we also provide a comprehensive and objective comparison of these classical and latest techniques through extensive experiments on representative datasets. Finally, we conclude with the current status of image matching technologies and deliver insightful discussions and prospects for future works. This survey can serve as a reference for (but not limited to) researchers and engineers in image matching and related fields.

474 citations


Cites background or methods from "Distinctive Image Features from Sca..."

  • ...The difference of Gaussians (DoG) (Lowe et al. 1999; Lowe 2004) filter can be used to approximate the LoG filter, and greatly speeds up the computations....

    [...]

  • ...Lin et al. (2011) used SIFT (Lowe 2004) to pre-compute matches and then jointly estimating the matching and the smoothly varying affine fields for better stitching performance....

    [...]

  • ...…into several parts and the local information is pooled in each part, then concatenate them by using pooling methods, such as rectangular gridding (Lowe 2004), polar gridding (Mikolajczyk and Schmid 2005), Gaussian sampling (Tola et al. 2010), and others (Rublee et al. 2011); the joint feature…...

    [...]

  • ...The well-known SIFT (Lowe2004), SURF (Bay et al. 2008), andORB (Rublee et al. 2011) algorithms are optionally used to detect and describe features, and RANSAC (Fischler and Bolles 1981) is subsequently used for robust matching....

    [...]

  • ...Gradient statistic methods are often used to form float type descriptors such as the histogram of oriented gradients (HOG) (Dalal and Triggs 2005) as introduced in SIFT (Lowe et al. 1999; Lowe 2004) and its improvement versions (Bay et al....

    [...]

Proceedings Article
03 Aug 2013
TL;DR: This paper proposes a new robust large-scale multi-view clustering method to integrate heterogeneous representations of largescale data and evaluates the proposed new methods by six benchmark data sets and compared the performance with several commonly used clustering approaches as well as the baseline multi- view clustering methods.
Abstract: In past decade, more and more data are collected from multiple sources or represented by multiple views, where different views describe distinct perspectives of the data. Although each view could be individually used for finding patterns by clustering, the clustering performance could be more accurate by exploring the rich information among multiple views. Several multi-view clustering methods have been proposed to unsupervised integrate different views of data. However, they are graph based approaches, e.g. based on spectral clustering, such that they cannot handle the large-scale data. How to combine these heterogeneous features for unsupervised large-scale data clustering has become a challenging problem. In this paper, we propose a new robust large-scale multi-view clustering method to integrate heterogeneous representations of largescale data. We evaluate the proposed new methods by six benchmark data sets and compared the performance with several commonly used clustering approaches as well as the baseline multi-view clustering methods. In all experimental results, our proposed methods consistently achieve superiors clustering performances.

471 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: It is shown that it is possible to automatically construct robust discriminative person and imaging condition specific models 'in- the-wild' that outperform state-of-the-art generic face alignment strategies.
Abstract: The development of facial databases with an abundance of annotated facial data captured under unconstrained 'in-the-wild' conditions have made discriminative facial deformable models the de facto choice for generic facial landmark localization. Even though very good performance for the facial landmark localization has been shown by many recently proposed discriminative techniques, when it comes to the applications that require excellent accuracy, such as facial behaviour analysis and facial motion capture, the semi-automatic person-specific or even tedious manual tracking is still the preferred choice. One way to construct a person-specific model automatically is through incremental updating of the generic model. This paper deals with the problem of updating a discriminative facial deformable model, a problem that has not been thoroughly studied in the literature. In particular, we study for the first time, to the best of our knowledge, the strategies to update a discriminative model that is trained by a cascade of regressors. We propose very efficient strategies to update the model and we show that is possible to automatically construct robust discriminative person and imaging condition specific models 'in-the-wild' that outperform state-of-the-art generic face alignment strategies.

471 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: This work proposes a pose-adaptive matching method that uses pose-specific classifiers to deal with different pose combinations of the matching face pair, and finds that a simple normalization mechanism after PCA can further improve the discriminative ability of the descriptor.
Abstract: We present a novel approach to address the representation issue and the matching issue in face recognition (verification). Firstly, our approach encodes the micro-structures of the face by a new learning-based encoding method. Unlike many previous manually designed encoding methods (e.g., LBP or SIFT), we use unsupervised learning techniques to learn an encoder from the training examples, which can automatically achieve very good tradeoff between discriminative power and invariance. Then we apply PCA to get a compact face descriptor. We find that a simple normalization mechanism after PCA can further improve the discriminative ability of the descriptor. The resulting face representation, learning-based (LE) descriptor, is compact, highly discriminative, and easy-to-extract. To handle the large pose variation in real-life scenarios, we propose a pose-adaptive matching method that uses pose-specific classifiers to deal with different pose combinations (e.g., frontal v.s. frontal, frontal v.s. left) of the matching face pair. Our approach is comparable with the state-of-the-art methods on the Labeled Face in Wild (LFW) benchmark (we achieved 84.45% recognition rate), while maintaining excellent compactness, simplicity, and generalization ability across different datasets.

470 citations

Posted Content
TL;DR: A novel siamese Long Short-Term Memory (LSTM) architecture that can process image regions sequentially and enhance the discriminative capability of local feature representation by leveraging contextual information.
Abstract: Matching pedestrians across multiple camera views known as human re-identification (re-identification) is a challenging problem in visual surveillance. In the existing works concentrating on feature extraction, representations are formed locally and independent of other regions. We present a novel siamese Long Short-Term Memory (LSTM) architecture that can process image regions sequentially and enhance the discriminative capability of local feature representation by leveraging contextual information. The feedback connections and internal gating mechanism of the LSTM cells enable our model to memorize the spatial dependencies and selectively propagate relevant contextual information through the network. We demonstrate improved performance compared to the baseline algorithm with no LSTM units and promising results compared to state-of-the-art methods on Market-1501, CUHK03 and VIPeR datasets. Visualization of the internal mechanism of LSTM cells shows meaningful patterns can be learned by our method.

468 citations

References
More filters
Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ ), which can be computed from the difference of two nearby scales separated by a constant multiplicative…...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings ArticleDOI
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993 citations

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422 citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.