scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
26 Dec 2007
TL;DR: This work proposes a technique for event recognition in crowded videos that reliably identifies actions in the presence of partial occlusion and background clutter, enabling robustness against occlusions and actor variability.
Abstract: Real-world actions occur often in crowded, dynamic environments. This poses a difficult challenge for current approaches to video event detection because it is difficult to segment the actor from the background due to distracting motion from other objects in the scene. We propose a technique for event recognition in crowded videos that reliably identifies actions in the presence of partial occlusion and background clutter. Our approach is based on three key ideas: (1) we efficiently match the volumetric representation of an event against oversegmented spatio-temporal video volumes; (2) we augment our shape-based features using flow; (3) rather than treating an event template as an atomic entity, we separately match by parts (both in space and time), enabling robustness against occlusions and actor variability. Our experiments on human actions, such as picking up a dropped object or waving in a crowd show reliable detection with few false positives.

436 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: This work proposes a novel approach to both learning and detecting local contour-based representations for mid-level features called sketch tokens, which achieve large improvements in detection accuracy for the bottom-up tasks of pedestrian and object detection as measured on INRIA and PASCAL, respectively.
Abstract: We propose a novel approach to both learning and detecting local contour-based representations for mid-level features. Our features, called sketch tokens, are learned using supervised mid-level information in the form of hand drawn contours in images. Patches of human generated contours are clustered to form sketch token classes and a random forest classifier is used for efficient detection in novel images. We demonstrate our approach on both top-down and bottom-up tasks. We show state-of-the-art results on the top-down task of contour detection while being over 200x faster than competing methods. We also achieve large improvements in detection accuracy for the bottom-up tasks of pedestrian and object detection as measured on INRIA and PASCAL, respectively. These gains are due to the complementary information provided by sketch tokens to low-level features such as gradient histograms.

436 citations

Journal ArticleDOI
27 Jul 2009
TL;DR: Video SnapCut is presented, a robust video object cutout system that significantly advances the state-of-the-art in segmentation and is completed with a novel coherent video matting technique.
Abstract: Although tremendous success has been achieved for interactive object cutout in still images, accurately extracting dynamic objects in video remains a very challenging problem. Previous video cutout systems present two major limitations: (1) reliance on global statistics, thus lacking the ability to deal with complex and diverse scenes; and (2) treating segmentation as a global optimization, thus lacking a practical workflow that can guarantee the convergence of the systems to the desired results.We present Video SnapCut, a robust video object cutout system that significantly advances the state-of-the-art. In our system segmentation is achieved by the collaboration of a set of local classifiers, each adaptively integrating multiple local image features. We show how this segmentation paradigm naturally supports local user editing and propagates them across time. The object cutout system is completed with a novel coherent video matting technique. A comprehensive evaluation and comparison is presented, demonstrating the effectiveness of the proposed system at achieving high quality results, as well as the robustness of the system against various types of inputs.

434 citations


Cites methods from "Distinctive Image Features from Sca..."

  • ...From two successive frames It and It+1, we first estimate a global affine transform from matching SIFT feature points, [Lowe 2004], between the two frames (only SIFT features inside the foreground object in It are used for matching), and use this transform to align It to It+1, resulting in a new image I ′ t+1....

    [...]

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper presents a unified framework for object detection, segmentation, and classification using regions using a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis.
Abstract: This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context because: (1) they encode shape and scale information of objects naturally; (2) they are only mildly affected by background clutter. Regions have not been popular as features due to their sensitivity to segmentation errors. In this paper, we start by producing a robust bag of overlaid regions for each image using Arbeldez et al., CVPR 2009. Each region is represented by a rich set of image cues (shape, color and texture). We then learn region weights using a max-margin framework. In detection and segmentation, we apply a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis. The proposed approach significantly outperforms the state of the art on the ETHZ shape database(87.1% average detection rate compared to Ferrari et al. 's 67.2%), and achieves competitive performance on the Caltech 101 database.

433 citations

Proceedings ArticleDOI
Simon Winder1, Matthew Brown1
17 Jun 2007
TL;DR: The best descriptors were those with log polar histogramming regions and feature vectors constructed from rectified outputs of steerable quadrature filters, which gave one third of the incorrect matches produced by SIFT.
Abstract: In this paper we study interest point descriptors for image matching and 3D reconstruction. We examine the building blocks of descriptor algorithms and evaluate numerous combinations of components. Various published descriptors such as SIFT, GLOH, and Spin images can be cast into our framework. For each candidate algorithm we learn good choices for parameters using a training set consisting of patches from a multi-image 3D reconstruction where accurate ground-truth matches are known. The best descriptors were those with log polar histogramming regions and feature vectors constructed from rectified outputs of steerable quadrature filters. At a 95% detection rate these gave one third of the incorrect matches produced by SIFT.

433 citations

References
More filters
Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ ), which can be computed from the difference of two nearby scales separated by a constant multiplicative…...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Book
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings ArticleDOI
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993 citations

Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422 citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.