scispace - formally typeset
Search or ask a question
Journal Articleā€¢DOIā€¢

Distinctive Image Features from Scale-Invariant Keypoints

01 Nov 2004-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 60, Iss: 2, pp 91-110
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Content maybe subject toĀ copyrightĀ Ā Ā  Report

Citations
More filters
Book Chapterā€¢DOIā€¢
Ze Yang1, Tiange Luo1, Dong Wang1, Zhiqiang Hu1, Jun Gao1, Liwei Wang1Ā ā€¢
08 Sep 2018
TL;DR: In this paper, a self-supervision mechanism is proposed to locate informative regions without the need of bounding-box/part annotations, which consists of a navigator agent, a teacher agent and a scrutinizer agent.
Abstract: Fine-grained classification is challenging due to the difficulty of finding discriminative features. Finding those subtle traits that fully characterize the object is not straightforward. To handle this circumstance, we propose a novel self-supervision mechanism to effectively localize informative regions without the need of bounding-box/part annotations. Our model, termed NTS-Net for Navigator-Teacher-Scrutinizer Network, consists of a Navigator agent, a Teacher agent and a Scrutinizer agent. In consideration of intrinsic consistency between informativeness of the regions and their probability being ground-truth class, we design a novel training paradigm, which enables Navigator to detect most informative regions under the guidance from Teacher. After that, the Scrutinizer scrutinizes the proposed regions from Navigator and makes predictions. Our model can be viewed as a multi-agent cooperation, wherein agents benefit from each other, and make progress together. NTS-Net can be trained end-to-end, while provides accurate fine-grained classification predictions as well as highly informative regions during inference. We achieve state-of-the-art performance in extensive benchmark datasets.

433Ā citations

Proceedings Articleā€¢DOIā€¢
21 Jul 2017
TL;DR: This work proposes a convolutional neural network architecture for geometric matching based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end.
Abstract: We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.

433Ā citations

Proceedings Articleā€¢DOIā€¢
13 Jun 2010
TL;DR: This work considers a scenario where keywords are associated with the training images, e.g. as found on photo sharing websites, and learns a strong Multiple Kernel Learning (MKL) classifier using both the image content and keywords, and uses it to score unlabeled images.
Abstract: In image categorization the goal is to decide if an image belongs to a certain category or not. A binary classifier can be learned from manually labeled images; while using more labeled examples improves performance, obtaining the image labels is a time consuming process. We are interested in how other sources of information can aid the learning process given a fixed amount of labeled images. In particular, we consider a scenario where keywords are associated with the training images, e.g. as found on photo sharing websites. The goal is to learn a classifier for images alone, but we will use the keywords associated with labeled and unlabeled images to improve the classifier using semi-supervised learning. We first learn a strong Multiple Kernel Learning (MKL) classifier using both the image content and keywords, and use it to score unlabeled images. We then learn classifiers on visual features only, either support vector machines (SVM) or least-squares regression (LSR), from the MKL output values on both the labeled and unlabeled images. In our experiments on 20 classes from the PASCAL VOC'07 set and 38 from the MIR Flickr set, we demonstrate the benefit of our semi-supervised approach over only using the labeled images. We also present results for a scenario where we do not use any manual labeling but directly learn classifiers from the image tags. The semi-supervised approach also improves classification accuracy in this case.

433Ā citations

Journal Articleā€¢DOIā€¢
TL;DR: Experimental results demonstrate that the novel color difference histograms (CDH) method is much more efficient than the existing image feature descriptors that were originally developed for content-based image retrieval, such as MPEG-7 edge histogram descriptors, color autocorrelograms and multi-texton histograms.

433Ā citations

Proceedings Articleā€¢DOIā€¢
10 Oct 2004
TL;DR: It is shown that, by optimizing layout and access to the index data on disk, the system can efficiently query indices containing millions of keypoints and make approximate similarity queries that only examine a small fraction of the database.
Abstract: We introduce a system for near-duplicate detection and sub-image retrieval. Such a system is useful for finding copyright violations and detecting forged images. We define near-duplicate as images altered with common transformations such as changing contrast, saturation, scaling, cropping, framing, etc. Our system builds a parts-based representation of images using distinctive local descriptors which give high quality matches even under severe transformations. To cope with the large number of features extracted from the images, we employ locality-sensitive hashing to index the local descriptors. This allows us to make approximate similarity queries that only examine a small fraction of the database. Although locality-sensitive hashing has excellent theoretical performance properties, a standard implementation would still be unacceptably slow for this application. We show that, by optimizing layout and access to the index data on disk, we can efficiently query indices containing millions of keypoints. Our system achieves near-perfect accuracy (100% precision at 99.85% recall) on the tests presented in Meng et al. [16], and consistently strong results on our own, significantly more challenging experiments. Query times are interactive even for collections of thousands of images.

432Ā citations

References
More filters
Proceedings Articleā€¢DOIā€¢
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989Ā citations


"Distinctive Image Features from Sca..." refers background or methods in this paper

  • ...The initial implementation of this approach (Lowe, 1999) simply located keypoints at the location and scale of the central sample point....

    [...]

  • ...Earlier work by the author (Lowe, 1999) extended the local feature approach to achieve scale invariance....

    [...]

  • ...More details on applications of these features to recognition are available in other pape rs (Lowe, 1999; Lowe, 2001; Se, Lowe and Little, 2002)....

    [...]

  • ...To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999) using scalespace extrema in the difference-of-Gaussian function convolved with the image, D(x, y, Ļƒ ), which can be computed from the difference of two nearby scales separated by a constant multiplicativeā€¦...

    [...]

  • ...More details on applications of these features to recognition are available in other papers (Lowe, 1999, 2001; Se et al., 2002)....

    [...]

Bookā€¢
01 Jan 2000
TL;DR: In this article, the authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly in a unified framework, including geometric principles and how to represent objects algebraically so they can be computed and applied.
Abstract: From the Publisher: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. The book covers the geometric principles and how to represent objects algebraically so they can be computed and applied. The authors provide comprehensive background material and explain how to apply the methods and implement the algorithms directly.

15,558Ā citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282Ā citations


"Distinctive Image Features from Sca..." refers background in this paper

  • ...A more general solution would be to solve for the fundamental matrix (Luong and Faugeras, 1996; Hartley and Zisserman, 2000)....

    [...]

Proceedings Articleā€¢DOIā€¢
01 Jan 1988
TL;DR: The problem the authors are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work.
Abstract: The problem we are addressing in Alvey Project MMI149 is that of using computer vision to understand the unconstrained 3D world, in which the viewed scenes will in general contain too wide a diversity of objects for topdown recognition techniques to work. For example, we desire to obtain an understanding of natural scenes, containing roads, buildings, trees, bushes, etc., as typified by the two frames from a sequence illustrated in Figure 1. The solution to this problem that we are pursuing is to use a computer vision system based upon motion analysis of a monocular image sequence from a mobile camera. By extraction and tracking of image features, representations of the 3D analogues of these features can be constructed.

13,993Ā citations

Journal Articleā€¢DOIā€¢
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.

3,422Ā citations

Trending Questions (1)
How can distinctive features theory be applied to elision?

The provided information does not mention anything about the application of distinctive features theory to elision.