scispace - formally typeset

Journal ArticleDOI

Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells

Anne E Wiblin, Wei Cui1, A. John Clark1, Wendy A. Bickmore 
01 Sep 2005-Journal of Cell Science (The Company of Biologists Ltd)-Vol. 118, Iss: 17, pp 3861-3868

TL;DR: It is concluded that hES cell nuclei have a distinct nuclear architecture, especially at loci involved in maintaining pluripotency, which provides a framework within which other large-scale chromatin changes that may accompany differentiation can be considered.

AbstractNuclear organisation is thought to be important in regulating gene expression. Here we investigate whether human embryonic stem cells (hES) have a particular nuclear organisation, which could be important for maintaining their pluripotent state. We found that whereas the nuclei of hES cells have a general gene-density-related radial organisation of chromosomes, as is seen in differentiated cells, there are also distinctive localisations for chromosome regions and gene loci with a role in pluripotency. Chromosome 12p, a region of the human genome that contains clustered pluripotency genes including NANOG, has a more central nuclear localisation in ES cells than in differentiated cells. On chromosome 6p we find no overall change in nuclear chromosome position, but instead we detect a relocalisation of the OCT4 locus, to a position outside its chromosome territory. There is also a smaller proportion of centromeres located close to the nuclear periphery in hES cells compared to differentiated cells. We conclude that hES cell nuclei have a distinct nuclear architecture, especially at loci involved in maintaining pluripotency. Understanding this level of hES cell biology provides a framework within which other large-scale chromatin changes that may accompany differentiation can be considered.

Topics: Rex1 (63%), Homeobox protein NANOG (57%), Cellular differentiation (57%), Chromosome Territory (56%), Nanog Homeobox Protein (54%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
12 Jun 2008-Nature
TL;DR: A high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts is constructed and demonstrates that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus.
Abstract: The architecture of human chromosomes in interphase nuclei is still largely unknown. Microscopy studies have indicated that specific regions of chromosomes are located in close proximity to the nuclear lamina (NL). This has led to the idea that certain genomic elements may be attached to the NL, which may contribute to the spatial organization of chromosomes inside the nucleus. However, sequences in the human genome that interact with the NL in vivo have not been identified. Here we construct a high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts. This map shows that genome-lamina interactions occur through more than 1,300 sharply defined large domains 0.1-10 megabases in size. These lamina-associated domains (LADs) are typified by low gene-expression levels, indicating that LADs represent a repressive chromatin environment. The borders of LADs are demarcated by the insulator protein CTCF, by promoters that are oriented away from LADs, or by CpG islands, suggesting possible mechanisms of LAD confinement. Taken together, these results demonstrate that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus.

1,606 citations


Journal ArticleDOI
TL;DR: It is suggested that hyperdynamic binding of structural chromatin proteins is a functionally important hallmark of pluripotent ES cells that contributes to the maintenance of plasticity in undifferentiated ES cells and to establishing higher-order chromatin structure.
Abstract: Differentiation of embryonic stem (ES) cells from a pluripotent to a committed state involves global changes in genome expression patterns. Gene activity is critically determined by chromatin structure and interactions of chromatin binding proteins. Here, we show that major architectural chromatin proteins are hyperdynamic and bind loosely to chromatin in ES cells. Upon differentiation, the hyperdynamic proteins become immobilized on chromatin. Hyperdynamic binding is a property of pluripotent cells, but not of undifferentiated cells that are already lineage committed. ES cells lacking the nucleosome assembly factor HirA exhibit elevated levels of unbound histones, and formation of embryoid bodies is accelerated. In contrast, ES cells, in which the dynamic exchange of H1 is restricted, display differentiation arrest. We suggest that hyperdynamic binding of structural chromatin proteins is a functionally important hallmark of pluripotent ES cells that contributes to the maintenance of plasticity in undifferentiated ES cells and to establishing higher-order chromatin structure.

948 citations


Cites background from "Distinctive nuclear organisation of..."

  • ...In another system, no significant differences in the extent of centromere clustering were observed between undifferentiated human ES cells and two diploid differentiated cell types, including a lymphoblastoid cell line (FATO LCL) and primary fibroblasts (Wiblin et al., 2005)....

    [...]

  • ...However, centromeres in ES cells were mainly found within the nuclear interior, whereas, in differentiated cells, centromeres tend to localize at the nuclear periphery (Wiblin et al., 2005)....

    [...]


Journal ArticleDOI
TL;DR: This work discusses how unique properties of chromatin in ES cells contribute to the maintenance of pluripotency and the determination of differentiation properties.
Abstract: What makes a stem cell is still poorly understood. Recent studies have uncovered that chromatin might hold some of the keys to how embryonic stem cells maintain their pluripotency, their ability to self-renew and induce lineage specification. Embryonic stem (ES) cells are unique in that they are pluripotent and have the ability to self-renew. The molecular mechanisms that underlie these two fundamental properties are largely unknown. We discuss how unique properties of chromatin in ES cells contribute to the maintenance of pluripotency and the determination of differentiation properties.

677 citations


Cites background from "Distinctive nuclear organisation of..."

  • ...For example, comparable distributions of centromeres and of promyelocytic leukaemia (PML) bodies (which are implicated in transcription, apoptosis and cellular stress processes) are found in both human ES cells and differentiated cell...

    [...]


Journal ArticleDOI
TL;DR: It is found that differentiated tissues show surprisingly large K9-modified regions (up to 4.9 Mb), which are large organized chromatin K9 modifications (LOCKs) and may provide a cell type–heritable mechanism for phenotypic plasticity in development and disease.
Abstract: Higher eukaryotes must adapt a totipotent genome to specialized cell types with stable but limited functions. One potential mechanism for lineage restriction is changes in chromatin, and differentiation-related chromatin changes have been observed for individual genes. We have taken a genome-wide view of histone H3 lysine 9 dimethylation (H3K9Me2) and find that differentiated tissues show surprisingly large K9-modified regions (up to 4.9 Mb). These regions are highly conserved between human and mouse and are differentiation specific, covering only approximately 4% of the genome in undifferentiated mouse embryonic stem (ES) cells, compared to 31% in differentiated ES cells, approximately 46% in liver and approximately 10% in brain. These modifications require histone methyltransferase G9a and are inversely related to expression of genes within the regions. We term these regions large organized chromatin K9 modifications (LOCKs). LOCKs are substantially lost in cancer cell lines, and they may provide a cell type-heritable mechanism for phenotypic plasticity in development and disease.

550 citations


Journal ArticleDOI
TL;DR: It is demonstrated that oxygen concentrations affected many aspects of stem-cell physiology, including growth and in vitro development, and may be a critical parameter during expansion and differentiation.
Abstract: Changes in oxygen concentrations affect many of the innate characteristics of stem and progenitor cells. Human mesenchymal stem cells (hMSCs) were maintained under hypoxic atmospheres (2% O(2)) for up to seven in vitro passages. This resulted in approximately 30-fold higher hMSC expansion over 6 weeks without loss of multi-lineage differentiation capabilities. Under hypoxia, hMSCs maintained their growth-rates even after reaching confluence, resulting in the formation of multiple cell layers. Hypoxic hMSCs also displayed differences in the cell and nuclear morphologies as well as enhanced ECM formation and organization. These changes in cellular characteristics were accompanied by higher mRNA levels of Oct-4 and HIF-2alpha, as well as increased expression levels of connexin-43, a protein used in gap junction formation. The results from this study demonstrated that oxygen concentrations affected many aspects of stem-cell physiology, including growth and in vitro development, and may be a critical parameter during expansion and differentiation.

474 citations


References
More filters

Journal ArticleDOI
06 Nov 1998-Science
TL;DR: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages.
Abstract: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.

14,753 citations


"Distinctive nuclear organisation of..." refers background or methods in this paper

  • ...Human ES cells have been derived from the inner cell mass of blastocysts, and as well as being able to self-renew, they have the ability to differentiate into all three embryonic germ layers when injected into severe combined immunodeficient mice (Thomson et al., 1998)....

    [...]

  • ...Human ES cell culture and analysis Human ES cell lines H1 (46XY), H7 and H9 (46XX) (Thomson et al., 1998) were grown as previously described, with minor modification (Xu et al., 2001)....

    [...]

  • ...Germ cells and stem cells in contrast have active telomerase, and robust telomerase activity is detected in hES cells (Thomson et al., 1998)....

    [...]

  • ...Human ES cell lines H1 (46XY), H7 and H9 (46XX) (Thomson et al., 1998) were grown as previously described, with minor modification (Xu et al....

    [...]


Journal ArticleDOI
TL;DR: A successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings and are suitable for scaleup production is demonstrated.
Abstract: Previous studies have shown that maintenance of undifferentiated human embryonic stem (hES) cells requires culture on mouse embryonic fibroblast (MEF) feeders. Here we demonstrate a successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings. In this system, hES cells are cultured on Matrigel or laminin in medium conditioned by MEF. The hES cells maintained on feeders or off feeders express integrin alpha6 and beta1, which may form a laminin-specific receptor. The hES cell populations in feeder-free conditions maintained a normal karyotype, stable proliferation rate, and high telomerase activity. Similar to cells cultured on feeders, hES cells maintained under feeder-free conditions expressed OCT-4, hTERT, alkaline phosphatase, and surface markers including SSEA-4, Tra 1-60, and Tra 1-81. In addition, hES cells maintained without direct feeder contact formed teratomas in SCID/beige mice and differentiated in vitro into cells from all three germ layers. Thus, the cells retain fundamental characteristics of hES cells in this culture system and are suitable for scaleup production.

2,046 citations


"Distinctive nuclear organisation of..." refers methods in this paper

  • ...Human ES cell culture and analysis Human ES cell lines H1 (46XY), H7 and H9 (46XX) (Thomson et al., 1998) were grown as previously described, with minor modification (Xu et al., 2001)....

    [...]

  • ..., 1998) were grown as previously described, with minor modification (Xu et al., 2001)....

    [...]


Journal ArticleDOI
18 Oct 2002-Science
TL;DR: The transcriptional profiles of mouse embryonic, neural, and hematopoietic stem cells were compared to define a genetic program for stem cells and provide a foundation for a more detailed understanding of stem cell biology.
Abstract: The transcriptional profiles of mouse embryonic, neural, and hematopoietic stem cells were compared to define a genetic program for stem cells. A total of 216 genes are enriched in all three types of stem cells, and several of these genes are clustered in the genome. When compared to differentiated cell types, stem cells express a significantly higher number of genes (represented by expressed sequence tags) whose functions are unknown. Embryonic and neural stem cells have many similarities at the transcriptional level. These results provide a foundation for a more detailed understanding of stem cell biology.

1,740 citations


"Distinctive nuclear organisation of..." refers background in this paper

  • ..., 2002b) and hES cells (Ramalho-Santos et al., 2002), but which is located in a low gene-density region at 11p13 (32Mb), remains inside the CT (Table 1)....

    [...]

  • ...In contrast, RCN, which is expressed in both LCLs (Mahy et al., 2002b) and hES cells (Ramalho-Santos et al., 2002), but which is located in a low gene-density region at 11p13 (32Mb), remains inside the CT (Table 1)....

    [...]


Journal ArticleDOI
TL;DR: It is suggested that increased dosage of chromosome 17q and 12 gene(s) provides a selective advantage for the propagation of undifferentiated hES cells in transplantation therapies in which the use of aneuploid cells could be detrimental.
Abstract: We have observed karyotypic changes involving the gain of chromosome 17q in three independent human embryonic stem (hES) cell lines on five independent occasions. A gain of chromosome 12 was seen occasionally. This implies that increased dosage of chromosome 17q and 12 gene(s) provides a selective advantage for the propagation of undifferentiated hES cells. These observations are instructive for the future application of hES cells in transplantation therapies in which the use of aneuploid cells could be detrimental.

1,021 citations


"Distinctive nuclear organisation of..." refers background in this paper

  • ...It is interesting to note that recurrent gains of chromosome 12, including iso12p, have been found in human ES cells (Draper et al., 2004)....

    [...]


Journal ArticleDOI
TL;DR: It is demonstrated that the distribution of genomic sequences between chromosomes has implications for nuclear structure and the findings are discussed in relation to a model of the human nucleus that is functionally compartmentalized.
Abstract: Using fluorescence in situ hybridization we show striking differences in nuclear position, chromosome morphology, and interactions with nuclear substructure for human chromosomes 18 and 19. Human chromosome 19 is shown to adopt a more internal position in the nucleus than chromosome 18 and to be more extensively associated with the nuclear matrix. The more peripheral localization of chromosome 18 is established early in the cell cycle and is maintained thereafter. We show that the preferential localization of chromosomes 18 and 19 in the nucleus is reflected in the orientation of translocation chromosomes in the nucleus. Lastly, we show that the inhibition of transcription can have gross, but reversible, effects on chromosome architecture. Our data demonstrate that the distribution of genomic sequences between chromosomes has implications for nuclear structure and we discuss our findings in relation to a model of the human nucleus that is functionally compartmentalized.

878 citations


"Distinctive nuclear organisation of..." refers background or methods in this paper

  • ...HSA18 is found towards the nuclear periphery in a variety of differentiated cells and HSA19 is in the centre of the nucleus (Croft et al., 1999; Cremer et al., 2003)....

    [...]

  • ...Hybridisation was as described previously (Croft et al., 1999) but with the denaturing time reduced to 1....

    [...]

  • ...Chromosome paints were labelled with biotin-16-dUTP by nick translation or by PCR amplification (Croft et al., 1999) or obtained commercially (Cambio)....

    [...]

  • ...Slides were then subjected to freeze-thaw in 20% glycerol/PBS and FISH was carried out as described previously (Croft et al., 1999)....

    [...]

  • ...The radial distribution of CTs was determined in 2D specimens by an erosion script, as previously described (Croft et al., 1999)....

    [...]


Related Papers (5)