scispace - formally typeset
Search or ask a question
BookDOI

Distributed Consensus in Multi-vehicle Cooperative Control

TL;DR: In this article, the authors present a survey of the use of consensus algorithms in multi-vehicle cooperative control, including single-and double-integrator dynamical systems, rigid-body attitude dynamics, rendezvous and axial alignment, formation control, deep-space formation flying, fire monitoring and surveillance.
Abstract: The coordinated use of autonomous vehicles has an abundance of potential applications from the domestic to the hazardously toxic. Frequently the communications necessary for the productive interplay of such vehicles may be subject to limitations in range, bandwidth, noise and other causes of unreliability. Information consensus guarantees that vehicles sharing information over a network topology have a consistent view of information critical to the coordination task. Assuming only neighbor-neighbor interaction between vehicles, Distributed Consensus in Multi-vehicle Cooperative Control develops distributed consensus strategies designed to ensure that the information states of all vehicles in a network converge to a common value. This approach strengthens the team, minimizing power consumption and the deleterious effects of range and other restrictions. The monograph is divided into six parts covering introductory, theoretical and experimental material and featuring: an overview of the use of consensus algorithms in cooperative control; consensus algorithms in single- and double-integrator dynamical systems; consensus algorithms for rigid-body attitude dynamics; rendezvous and axial alignment, formation control, deep-space formation flying, fire monitoring and surveillance. Notation drawn from graph and matrix theory and background material on linear and nonlinear system theory are enumerated in six appendices. The authors maintain a website at which can be found a sample simulation and experimental video material associated with experiments in several chapters of this book. Academic control systems researchers and their counterparts in government laboratories and robotics- and aerospace-related industries will find the ideas presented in Distributed Consensus in Multi-vehicle Cooperative Control of great interest. This text will also serve as a valuable support and reference for graduate courses in robotics, and linear and nonlinear control systems.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006 and proposed several promising research directions along with some open problems that are deemed important for further investigations.
Abstract: This paper reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles, and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations.

1,814 citations

Posted Content
TL;DR: In this paper, the authors reviewed some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006, and proposed several promising research directions along with some open problems that are deemed important for further investigations.
Abstract: This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations.

1,655 citations

Journal ArticleDOI
TL;DR: A necessary and sufficient condition is provided, which shows that consensus can be achieved in a multi-agent system whose network topology contains a directed spanning tree if and only if the time delay is less than a critical value.

1,284 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: The architecture described in this paper is a roadmap for a future automated and flexible electric power distribution system that is suitable for plug-and-play of distributed renewable energy and distributed energy storage devices.
Abstract: This paper presents an architecture for a future electric power distribution system that is suitable for plug-and-play of distributed renewable energy and distributed energy storage devices. Motivated by the success of the (information) Internet, the architecture described in this paper was proposed by the NSF FREEDM Systems Center, Raleigh, NC, as a roadmap for a future automated and flexible electric power distribution system. In the envisioned “Energy Internet,” a system that enables flexible energy sharing is proposed for consumers in a residential distribution system. The key technologies required to achieve such a vision are presented in this paper as a result of the research partnership of the FREEDM Systems Center.

1,237 citations

BookDOI
26 Jul 2009
TL;DR: This self-contained introduction to the distributed control of robotic networks offers a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation.
Abstract: This self-contained introduction to the distributed control of robotic networks offers a distinctive blend of computer science and control theory. The book presents a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation. The unifying theme is a formal model for robotic networks that explicitly incorporates their communication, sensing, control, and processing capabilities--a model that in turn leads to a common formal language to describe and analyze coordination algorithms.Written for first- and second-year graduate students in control and robotics, the book will also be useful to researchers in control theory, robotics, distributed algorithms, and automata theory. The book provides explanations of the basic concepts and main results, as well as numerous examples and exercises.Self-contained exposition of graph-theoretic concepts, distributed algorithms, and complexity measures for processor networks with fixed interconnection topology and for robotic networks with position-dependent interconnection topology Detailed treatment of averaging and consensus algorithms interpreted as linear iterations on synchronous networks Introduction of geometric notions such as partitions, proximity graphs, and multicenter functions Detailed treatment of motion coordination algorithms for deployment, rendezvous, connectivity maintenance, and boundary estimation

1,166 citations

References
More filters
Journal ArticleDOI
TL;DR: A theoretical explanation for the observed behavior of the Vicsek model, which proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
Abstract: In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling discrete-time model of n autonomous agents (i.e., points or particles) all moving in the plane with the same speed but with different headings. Each agent's heading is updated using a local rule based on the average of its own heading plus the headings of its "neighbors." In their paper, Vicsek et al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.

8,233 citations

Journal ArticleDOI
TL;DR: Numerical evidence is presented that this model results in a kinetic phase transition from no transport to finite net transport through spontaneous symmetry breaking of the rotational symmetry.
Abstract: A simple model with a novel type of dynamics is introduced in order to investigate the emergence of self-ordered motion in systems of particles with biologically motivated interaction. In our model particles are driven with a constant absolute velocity and at each time step assume the average direction of motion of the particles in their neighborhood with some random perturbation $(\ensuremath{\eta})$ added. We present numerical evidence that this model results in a kinetic phase transition from no transport (zero average velocity, $|{\mathbf{v}}_{a}|\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}0$) to finite net transport through spontaneous symmetry breaking of the rotational symmetry. The transition is continuous, since $|{\mathbf{v}}_{a}|$ is found to scale as $({\ensuremath{\eta}}_{c}\ensuremath{-}\ensuremath{\eta}{)}^{\ensuremath{\beta}}$ with $\ensuremath{\beta}\ensuremath{\simeq}0.45$.

6,514 citations

Journal ArticleDOI
TL;DR: A Nyquist criterion is proved that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability, and a method for decentralized information exchange between vehicles is proposed.
Abstract: We consider the problem of cooperation among a collection of vehicles performing a shared task using intervehicle communication to coordinate their actions. Tools from algebraic graph theory prove useful in modeling the communication network and relating its topology to formation stability. We prove a Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability. We also propose a method for decentralized information exchange between vehicles. This approach realizes a dynamical system that supplies each vehicle with a common reference to be used for cooperative motion. We prove a separation principle that decomposes formation stability into two components: Stability of this is achieved information flow for the given graph and stability of an individual vehicle for the given controller. The information flow can thus be rendered highly robust to changes in the graph, enabling tight formation control despite limitations in intervehicle communication capability.

4,377 citations

Journal ArticleDOI
Wei Ren1
TL;DR: This paper first analyzes a consensus algorithm with a constant reference state using graph theoretical tools, then proposes consensus algorithms with a time-varying reference state and shows necessary and sufficient conditions under which consensus is reached on the time-Varyingreference state.

741 citations

Journal ArticleDOI
Wei Ren1
TL;DR: In this article, a consensus-based formation control strategy is proposed to guarantee accurate formation maintenance in the general case of arbitrary (directed) information flow between vehicles as long as certain mild conditions are satisfied.
Abstract: Extensions of a consensus algorithm are introduced for systems modelled by second-order dynamics. Variants of those consensus algorithms are applied to tackle formation control problems by appropriately choosing information states on which consensus is reached. Even in the absence of centralised leadership, the consensus-based formation control strategies can guarantee accurate formation maintenance in the general case of arbitrary (directed) information flow between vehicles as long as certain mild conditions are satisfied. It is shown that many existing leader-follower, behavioural and virtual structure/virtual leader formation control approaches can be unified in the general framework of consensus building. A multiple micro air vehicle formation flying example is shown in simulation to illustrate the strategies

732 citations