scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distributed Robust Finite-Time Secondary Voltage and Frequency Control of Islanded Microgrids

TL;DR: In this article, a distributed cooperative secondary control for both voltage and frequency restoration of an islanded microgrid with droop-controlled inverter-based distributed generators (DGs) is presented.
Abstract: This paper presents a distributed, robust, finite-time secondary control for both voltage and frequency restoration of an islanded microgrid with droop-controlled inverter-based distributed generators (DGs). The distributed cooperative secondary control is fully distributed (i.e., uses only the information of neighboring DGs that can communicate with one another through a sparse communication network). In contrast to existing distributed methods that require a detailed model of the system (such as line impedances, loads, other DG units parameters, and even the microgrid configuration, which are practically unknown), the proposed protocols are synthesized by considering the unmodeled dynamics, unknown disturbances, and uncertainties in their models. The other novel idea in this paper is that the consensus-based distributed controllers restore the islanded microgrid's voltage magnitudes and frequency to their reference values for all DGs within finite time, irrespective of parametric uncertainties, unmodeled dynamics, and disturbances, while providing accurate real-power sharing. Moreover, the proposed method considers the coupling between the frequency and voltage of the islanded microgrid. Unlike conventional distributed controllers, the proposed approach quickly reaches consensus and exhibits a more accurate robust performance. Finally, we verify the proposed control strategy's performance using the MATLAB/SimPowerSystems toolbox.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the state-of-the-art of distributed filtering and control of industrial CPSs described by differential dynamics models is presented and some challenges are raised to guide the future research.
Abstract: Industrial cyber-physical systems (CPSs) are large-scale, geographically dispersed, and life-critical systems, in which lots of sensors and actuators are embedded and networked together to facilitate real-time monitoring and closed-loop control. Their intrinsic features in geographic space and resources put forward to urgent requirements of reliability and scalability for designed filtering or control schemes. This paper presents a review of the state-of-the-art of distributed filtering and control of industrial CPSs described by differential dynamics models. Special attention is paid to sensor networks, manipulators, and power systems. For real-time monitoring, some typical Kalman-based distributed algorithms are summarized and their performances on calculation burden and communication burden, as well as scalability, are discussed in depth. Then, the characteristics of non-Kalman cases are further disclosed in light of constructed filter structures. Furthermore, the latest development is surveyed for distributed cooperative control of mobile manipulators and distributed model predictive control in industrial automation systems. By resorting to droop characteristics, representative distributed control strategies classified by controller structures are systematically summarized for power systems with the requirements of power sharing and voltage and frequency regulation. In addition, distributed security control of industrial CPSs is reviewed when cyber-attacks are taken into consideration. Finally, some challenges are raised to guide the future research.

376 citations


Cites background from "Distributed Robust Finite-Time Seco..."

  • ...1) Conventional distributed control based on droop characteristics Under the well-known d-q (direct-quadrature) reference frame, the large-signal nonlinear dynamical model of microgrids with voltage source converters [119], [120] can be described in a compact form { ẋi = fi(xi) + gi(xi)ui + hi(xi)Di y(1) i = vodi, y 2 i = wi = −d p iPi + u2,i (8)...

    [...]

  • ...A consensus based distributed controller is designed in [120] to provide more robustness to unmodelled dynamics, unknown disturbances, and uncertainties while restoring the desired voltage magnitude and frequency within finite time....

    [...]

Journal ArticleDOI
TL;DR: All types of SC policies are reviewed and classify from CI-based methods to communication-free policies, including CSC, averaging-based DISC, consensus- based DISC methods, containment pinning consensus, event-triggeredDISC, washout-filter-based DESC, and state-estimation-basedDESC.
Abstract: Communication infrastructure (CI) in microgrids (MGs) allows for the application of different control architectures for the secondary control (SC) layer. The use of new SC architectures involving CI is motivated by the need to increase MG resilience and handle the intermittent nature of distributed generation units. The structure of SC is classified into three main categories, including centralized SC (CSC) with a CI, distributed SC (DISC) generally with a low-data-rate CI, and decentralized SC (DESC) with communication-free infrastructure. To meet the MGs’ operational constraints and optimize performance, control and communication must be utilized simultaneously in different control layers. In this survey, we review and classify all types of SC policies from CI-based methods to communication-free policies, including CSC, averaging-based DISC, consensus-based DISC methods, containment pinning consensus, event-triggered DISC, washout-filter-based DESC, and state-estimation-based DESC. Each structure is scrutinized from the viewpoint of the relevant literature. Challenges such as clock drifts, cyber-security threats, and the advantage of event-triggered approaches are presented. Fully decentralized approaches based on state-estimation and observation methods are also addressed. Although these approaches eliminate the need of any CI for the voltage and frequency restoration, during black start process or other functionalities related to the tertiary layer, a CI is required. Power hardware-in-the-loop experimental tests are carried out to compare the merits and applicability of different SC structures.

213 citations

Journal ArticleDOI
TL;DR: An optimal distributed control strategy for the coordination of multiple distributed generators in an islanded microgrid (MG) is proposed and a secondary voltage control approach is presented to regulate the average voltage magnitude of all distributed generators to the desired value and achieve accurate reactive power sharing.
Abstract: This paper proposes an optimal distributed control strategy for the coordination of multiple distributed generators in an islanded microgrid (MG). A finite-time secondary frequency control approach is developed to eliminate the frequency deviation and maintain accurate active power sharing in a finite-time manner. It is demonstrated that the traditional distributed control approach with asymptotical convergence is just a special case of the proposed finite-time control strategy under the specific control parameter settings. Then, a secondary voltage control approach is presented to regulate the average voltage magnitude of all distributed generators to the desired value and achieve accurate reactive power sharing. The implementation of the proposed distributed control strategy only requires information exchange among neighboring local controllers through a sparse communication network. Simulations with an islanded MG testbed built in MATLAB/Simulink are conducted to validate the effectiveness of the proposed distributed control strategy.

154 citations


Cites background from "Distributed Robust Finite-Time Seco..."

  • ...Following this research direction, a few finite-time voltage restoration strategies were proposed in [22], [23], which designed the voltage controller independent from the frequency controller....

    [...]

Journal ArticleDOI
TL;DR: An overview of the state-of-the-art of distributed cooperative control systems for isolated microgrids is presented and Protocols for cooperative control such as linear consensus, heterogeneous consensus and finite-time consensus are discussed and reviewed.
Abstract: There is an increasing interest and research effort focused on the analysis, design and implementation of distributed control systems for AC , DC and hybrid AC / DC microgrids. It is claimed that distributed controllers have several advantages over centralised control schemes, e.g., improved reliability, flexibility, controllability, black start operation, robustness to failure in the communication links, etc. In this work, an overview of the state-of-the-art of distributed cooperative control systems for isolated microgrids is presented. Protocols for cooperative control such as linear consensus, heterogeneous consensus and finite-time consensus are discussed and reviewed in this paper. Distributed cooperative algorithms for primary and secondary control systems, including (among others issues) virtual impedance, synthetic inertia, droop-free control, stability analysis, imbalance sharing, total harmonic distortion regulation, are also reviewed and discussed in this survey. Tertiary control systems, e.g., for economic dispatch of electric energy, based on cooperative control approaches, are also addressed in this work. This review also highlights existing issues, research challenges and future trends in distributed cooperative control of microgrids and their future applications.

142 citations


Cites methods from "Distributed Robust Finite-Time Seco..."

  • ...Another type of modification in the control algorithms is developed in [121], [146], [147], [149], [153], where finite-time consensus control is employed to restore both frequency and voltage in the MG....

    [...]

Journal ArticleDOI
TL;DR: This paper provides a comprehensive survey of different control aspects of MGs, broadly classified under four control strategies: centralized, decentralized, distributed and hierarchical frameworks.

141 citations

References
More filters
Journal ArticleDOI
01 Nov 2009
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

4,145 citations


"Distributed Robust Finite-Time Seco..." refers background in this paper

  • ...These requirements reduce the overall system reliability and increase its sensitivity to failures that can lead to a single point of failure [4], [5], [7]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors developed a model for autonomous operation of inverter-based micro-grids, where each sub-module is modeled in state-space form and all are combined together on a common reference frame.
Abstract: The analysis of the small-signal stability of conventional power systems is well established, but for inverter based microgrids there is a need to establish how circuit and control features give rise to particular oscillatory modes and which of these have poor damping. This paper develops the modeling and analysis of autonomous operation of inverter-based microgrids. Each sub-module is modeled in state-space form and all are combined together on a common reference frame. The model captures the detail of the control loops of the inverter but not the switching action. Some inverter modes are found at relatively high frequency and so a full dynamic model of the network (rather than an algebraic impedance model) is used. The complete model is linearized around an operating point and the resulting system matrix is used to derive the eigenvalues. The eigenvalues (termed "modes") indicate the frequency and damping of oscillatory components in the transient response. A sensitivity analysis is also presented which helps identifying the origin of each of the modes and identify possible feedback signals for design of controllers to improve the system stability. With experience it is possible to simplify the model (reduce the order) if particular modes are not of interest as is the case with synchronous machine models. Experimental results from a microgrid of three 10-kW inverters are used to verify the results obtained from the model

2,482 citations


"Distributed Robust Finite-Time Seco..." refers background in this paper

  • ...[33] proves the stability of the zero dynamics (11) and (31) of the DG model (4) for the frequency and voltage control....

    [...]

  • ...We assume that internal dynamics are asymptotically stable [12], [33]....

    [...]

Journal ArticleDOI
TL;DR: Decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids that mimic the behavior of the mains grid is reviewed.
Abstract: This paper presents a review of advanced control techniques for microgrids. This paper covers decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the stability analysis of decentralized controlled microgrids are discussed. Finally, hierarchical control for microgrids that mimic the behavior of the mains grid is reviewed.

1,702 citations


"Distributed Robust Finite-Time Seco..." refers background in this paper

  • ...However, because primary control has some drawbacks, such as the voltage and frequency deviation caused by droop technique, hierarchical control has been presented to standardize the microgrid operation [3]–[6]....

    [...]

Journal ArticleDOI
TL;DR: This paper reviews the status of hierarchical control strategies applied to microgrids and discusses the future trends.
Abstract: Advanced control strategies are vital components for realization of microgrids. This paper reviews the status of hierarchical control strategies applied to microgrids and discusses the future trends. This hierarchical control structure consists of primary, secondary, and tertiary levels, and is a versatile tool in managing stationary and dynamic performance of microgrids while incorporating economical aspects. Various control approaches are compared and their respective advantages are highlighted. In addition, the coordination among different control hierarchies is discussed.

1,234 citations


"Distributed Robust Finite-Time Seco..." refers background in this paper

  • ...These requirements reduce the overall system reliability and increase its sensitivity to failures that can lead to a single point of failure [4], [5], [7]....

    [...]

Book
19 Feb 2009
TL;DR: In this paper, a new framework based on matrix theory is proposed to analyze and design cooperative controls for a group of individual dynamical systems whose outputs are sensed by or communicated to others in an intermittent, dynamically changing, and local manner.
Abstract: In this paper, a new framework based on matrix theory is proposed to analyze and design cooperative controls for a group of individual dynamical systems whose outputs are sensed by or communicated to others in an intermittent, dynamically changing, and local manner. In the framework, sensing/communication is described mathematically by a time-varying matrix whose dimension is equal to the number of dynamical systems in the group and whose elements assume piecewise-constant and binary values. Dynamical systems are generally heterogeneous and can be transformed into a canonical form of different, arbitrary, but finite relative degrees. Utilizing a set of new results on augmentation of irreducible matrices and on lower triangulation of reducible matrices, the framework allows a designer to study how a general local-and-output-feedback cooperative control can determine group behaviors of the dynamical systems and to see how changes of sensing/communication would impact the group behaviors over time. A necessary and sufficient condition on convergence of a multiplicative sequence of reducible row-stochastic (diagonally positive) matrices is explicitly derived, and through simple choices of a gain matrix in the cooperative control law, the overall closed-loop system is shown to exhibit cooperative behaviors (such as single group behavior, multiple group behaviors, adaptive cooperative behavior for the group, and cooperative formation including individual behaviors). Examples, including formation control of nonholonomic systems in the chained form, are used to illustrate the proposed framework.

937 citations


"Distributed Robust Finite-Time Seco..." refers background in this paper

  • ...Moreover, for an undirected graph, if node i is a neighbor of node j, then node j can get information from node i and vice versa [31]....

    [...]