scispace - formally typeset

Journal ArticleDOI

Distribution and location of genetic effects for dairy traits

01 Jun 2009-Journal of Dairy Science (Elsevier)-Vol. 92, Iss: 6, pp 2931-2946

AbstractGenetic effects for many dairy traits and for total economic merit are evenly distributed across all chromosomes. A high-density scan using 38,416 single nucleotide polymorphism markers for 5,285 bulls confirmed 2 previously known major genes on Bos taurus autosomes (BTA) 6 and 14 but revealed few other large effects. Markers on BTA18 had the largest effects on calving ease, several conformation traits, longevity, and total merit. Prediction accuracy was highest using a heavy-tailed prior assuming that each marker had an effect on each trait, rather than assuming a normal distribution of effects as in a linear model, or that only some loci have nonzero effects. A prior model combining heavy tails with finite alleles produced results that were intermediate compared with the individual models. Differences between models were small (1 to 2%) for traits with no major genes and larger for heavy tails with traits having known quantitative trait loci (QTL; 6 to 8%). Analysis of bull recessive codes suggested that marker effects from genomic selection may be used to identify regions of chromosomes to search in detail for candidate genes, but individual single nucleotide polymorphisms were not tracking causative mutations with the exception of diacylglycerol O-acyltransferase 1. Additive genetic merits were constructed for each chromosome, and the distribution of BTA14-specific estimated breeding value (EBV) showed that selection primarily for milk yield has not changed the distribution of EBV for fat percentage even in the presence of a known QTL. Such chromosomal EBV also may be useful for identifying complementary mates in breeding programs. The QTL affecting dystocia, conformation, and economic merit on BTA18 appear to be related to calf size or birth weight and may be the result of longer gestation lengths. Results validate quantitative genetic assumptions that most traits are due to the contributions of a large number of genes of small additive effect, rather than support the finite locus model.

Topics: Quantitative trait locus (60%), Allele (54%), Locus (genetics) (53%), Candidate gene (52%), Single-nucleotide polymorphism (51%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations and genomic prediction improves reliability by tracing the inheritance of genes even with small effects.
Abstract: Genetic progress will increase when breeders examine genotypes in addition to pedigrees and phenotypes. Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations for 1,759 bulls born from 1999 through 2002. Genotypes were generated using the Illumina BovineSNP50 BeadChip and DNA from semen contributed by US and Canadian artificial-insemination organizations to the Cooperative Dairy DNA Repository. Genomic predictions for 5 yield traits, 5 fitness traits, 16 conformation traits, and net merit were computed using a linear model with an assumed normal distribution for marker effects and also using a nonlinear model with a heavier tailed prior distribution to account for major genes. The official parent average from 2003 and a 2003 parent average computed from only the subset of genotyped ancestors were combined with genomic predictions using a selection index. Combined predictions were more accurate than official parent averages for all 27 traits. The coefficients of determination (R(2)) were 0.05 to 0.38 greater with nonlinear genomic predictions included compared with those from parent average alone. Linear genomic predictions had R(2) values similar to those from nonlinear predictions but averaged just 0.01 lower. The greatest benefits of genomic prediction were for fat percentage because of a known gene with a large effect. The R(2) values were converted to realized reliabilities by dividing by mean reliability of 2008 daughter deviations and then adding the difference between published and observed reliabilities of 2003 parent averages. When averaged across all traits, combined genomic predictions had realized reliabilities that were 23% greater than reliabilities of parent averages (50 vs. 27%), and gains in information were equivalent to 11 additional daughter records. Reliability increased more by doubling the number of bulls genotyped than the number of markers genotyped. Genomic prediction improves reliability by tracing the inheritance of genes even with small effects.

1,074 citations


Journal ArticleDOI
TL;DR: A national single-step genetic evaluation with the pedigree relationship matrix augmented with genomic information provided genomic predictions with accuracy and bias comparable to multiple-step procedures and could account for any population or data structure.
Abstract: The first national single-step, full-information (phenotype, pedigree, and marker genotype) genetic evaluation was developed for final score of US Holsteins. Data included final scores recorded from 1955 to 2009 for 6,232,548 Holsteins cows. BovineSNP50 (Illumina, San Diego, CA) genotypes from the Cooperative Dairy DNA Repository (Beltsville, MD) were available for 6,508 bulls. Three analyses used a repeatability animal model as currently used for the national US evaluation. The first 2 analyses used final scores recorded up to 2004. The first analysis used only a pedigree-based relationship matrix. The second analysis used a relationship matrix based on both pedigree and genomic information (single-step approach). The third analysis used the complete data set and only the pedigree-based relationship matrix. The fourth analysis used predictions from the first analysis (final scores up to 2004 and only a pedigree-based relationship matrix) and prediction using a genomic based matrix to obtain genetic evaluation (multiple-step approach). Different allele frequencies were tested in construction of the genomic relationship matrix. Coefficients of determination between predictions of young bulls from parent average, single-step, and multiple-step approaches and their 2009 daughter deviations were 0.24, 0.37 to 0.41, and 0.40, respectively. The highest coefficient of determination for a single-step approach was observed when using a genomic relationship matrix with assumed allele frequencies of 0.5. Coefficients for regression of 2009 daughter deviations on parent-average, single-step, and multiple-step predictions were 0.76, 0.68 to 0.79, and 0.86, respectively, which indicated some inflation of predictions. The single-step regression coefficient could be increased up to 0.92 by scaling differences between the genomic and pedigree-based relationship matrices with little loss in accuracy of prediction. One complete evaluation took about 2h of computing time and 2.7 gigabytes of memory. Computing times for single-step analyses were slightly longer (2%) than for pedigree-based analysis. A national single-step genetic evaluation with the pedigree relationship matrix augmented with genomic information provided genomic predictions with accuracy and bias comparable to multiple-step procedures and could account for any population or data structure. Advantages of single-step evaluations should increase in the future when animals are pre-selected on genotypes.

851 citations


Journal ArticleDOI
TL;DR: It is argued that neither theory nor data justify a view of readily discoverable large‐effect alleles as the primary molecular substrates for evolution, and that evolution often acts via large numbers of small‐effect polygenes, individually undetectable.
Abstract: The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment. Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental evolutionary questions, they are essentially misleading about many others.

593 citations


Journal ArticleDOI
TL;DR: The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls.
Abstract: The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls. In the first phase of the 1000 bull genomes project, we sequenced the whole genomes of 234 cattle to an average of 8.3-fold coverage. This sequencing includes data for 129 individuals from the global Holstein-Friesian population, 43 individuals from the Fleckvieh breed and 15 individuals from the Jersey breed. We identified a total of 28.3 million variants, with an average of 1.44 heterozygous sites per kilobase for each individual. We demonstrate the use of this database in identifying a recessive mutation underlying embryonic death and a dominant mutation underlying lethal chrondrodysplasia. We also performed genome-wide association studies for milk production and curly coat, using imputed sequence variants, and identified variants associated with these traits in cattle.

592 citations


Journal ArticleDOI
TL;DR: The proposed methodology may allow the upgrading of an existing evaluation to incorporate the genomic information when the information attributable to genomics can be expressed as modifications to the numerator relationship matrix.
Abstract: Currently, genomic evaluations use multiple-step procedures, which are prone to biases and errors. A single-step procedure may be applicable when genomic predictions can be obtained by modifying the numerator relationship matrix A to H = A + A(Delta), where A(Delta) includes deviations from expected relationships. However, the traditional mixed model equations require H(-1), which is usually difficult to obtain for large pedigrees. The computations with H are feasible when the mixed model equations are expressed in an alternate form that also applies for singular H and when those equations are solved by the conjugate gradient techniques. Then the only computations involving H are in the form of Aq or A(Delta)q, where q is a vector. The alternative equations have a nonsymmetric left-hand side. Computing A(Delta)q is inexpensive when the number of nonzeros in A(Delta) is small, and the product Aq can be calculated efficiently in linear time using an indirect algorithm. Generalizations to more complicated models are proposed. The data included 10.2 million final scores on 6.2 million Holsteins and were analyzed by a repeatability model. Comparisons involved the regular and the alternative equations. The model for the second case included simulated A(Delta). Solutions were obtained by the preconditioned conjugate gradient algorithm, which works only with symmetric matrices, and by the bi-conjugate gradient stabilized algorithm, which also works with nonsymmetric matrices. The convergence rate associated with the nonsymmetric solvers was slightly better than that with the symmetric solver for the original equations, although the time per round was twice as much for the nonsymmetric solvers. The convergence rate associated with the alternative equations ranged from 2 times lower without A(Delta) to 3 times lower for the largest simulated A(Delta). When the information attributable to genomics can be expressed as modifications to the numerator relationship matrix, the proposed methodology may allow the upgrading of an existing evaluation to incorporate the genomic information.

396 citations


References
More filters

Book
01 Jan 1981
TL;DR: The genetic constitution of a population: Hardy-Weinberg equilibrium and changes in gene frequency: migration mutation, changes of variance, and heritability are studied.
Abstract: Part 1 Genetic constitution of a population: Hardy-Weinberg equilibrium. Part 2 Changes in gene frequency: migration mutation. Part 3 Small populations - changes in gene frequency under simplified conditions. Part 4 Small populations - less simplified conditions. Part 5 Small populations - pedigreed populations and close inbreeding. Part 6 Continuous variation. Part 7 Values and means. Part 8 Variance. Part 9 Resemblance between relatives. Part 10 Heritability. Part 11 Selection - the response and its prediction. Part 12 Selection - the results of experiments. Part 13 Selection - information from relatives. Part 14 Inbreeding and crossbreeding - changes of mean value. Part 15 Inbreeding and crossbreeding - changes of variance. Part 16 Inbreeding and crossbreeding - applications. Part 17 Scale. Part 18 Threshold characters. Part 19 Correlated characters. Part 20 Metric characters under natural selection.

20,268 citations


Journal ArticleDOI
01 Apr 2001-Genetics
TL;DR: It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.
Abstract: Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was simulated with a marker spacing of 1 cM. The markers surrounding every 1-cM region were combined into marker haplotypes. Due to finite population size (Ne = 100), the marker haplotypes were in linkage disequilibrium with the QTL located between the markers. Using least squares, all haplotype effects could not be estimated simultaneously. When only the biggest effects were included, they were overestimated and the accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods that assumed a prior distribution of the variance associated with each chromosome segment increased this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.

5,158 citations


Journal ArticleDOI
TL;DR: Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously, and a blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects.
Abstract: Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously. Algorithms were derived and computer programs tested with simulated data for 2,967 bulls and 50,000 markers distributed randomly across 30 chromosomes. Estimation of genomic inbreeding coefficients required accurate estimates of allele frequencies in the base population. Linear model predictions of breeding values were computed by 3 equivalent methods: 1) iteration for individual allele effects followed by summation across loci to obtain estimated breeding values, 2) selection index including a genomic relationship matrix, and 3) mixed model equations including the inverse of genomic relationships. A blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects. Reliability of predicted net merit for young bulls was 63% compared with 32% using the traditional relationship matrix. Nonlinear predictions were also computed using iteration on data and nonlinear regression on marker deviations; an additional (about 3%) gain in reliability for young bulls increased average reliability to 66%. Computing times increased linearly with number of genotypes. Estimation of allele frequencies required 2 processor days, and genomic predictions required <1 d per trait, and traits were processed in parallel. Information from genotyping was equivalent to about 20 daughters with phenotypic records. Actual gains may differ because the simulation did not account for linkage disequilibrium in the base population or selection in subsequent generations.

3,305 citations


01 Jan 1984

2,418 citations


Journal ArticleDOI
TL;DR: Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations and genomic prediction improves reliability by tracing the inheritance of genes even with small effects.
Abstract: Genetic progress will increase when breeders examine genotypes in addition to pedigrees and phenotypes. Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations for 1,759 bulls born from 1999 through 2002. Genotypes were generated using the Illumina BovineSNP50 BeadChip and DNA from semen contributed by US and Canadian artificial-insemination organizations to the Cooperative Dairy DNA Repository. Genomic predictions for 5 yield traits, 5 fitness traits, 16 conformation traits, and net merit were computed using a linear model with an assumed normal distribution for marker effects and also using a nonlinear model with a heavier tailed prior distribution to account for major genes. The official parent average from 2003 and a 2003 parent average computed from only the subset of genotyped ancestors were combined with genomic predictions using a selection index. Combined predictions were more accurate than official parent averages for all 27 traits. The coefficients of determination (R(2)) were 0.05 to 0.38 greater with nonlinear genomic predictions included compared with those from parent average alone. Linear genomic predictions had R(2) values similar to those from nonlinear predictions but averaged just 0.01 lower. The greatest benefits of genomic prediction were for fat percentage because of a known gene with a large effect. The R(2) values were converted to realized reliabilities by dividing by mean reliability of 2008 daughter deviations and then adding the difference between published and observed reliabilities of 2003 parent averages. When averaged across all traits, combined genomic predictions had realized reliabilities that were 23% greater than reliabilities of parent averages (50 vs. 27%), and gains in information were equivalent to 11 additional daughter records. Reliability increased more by doubling the number of bulls genotyped than the number of markers genotyped. Genomic prediction improves reliability by tracing the inheritance of genes even with small effects.

1,074 citations