scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distribution and location of genetic effects for dairy traits

TL;DR: A high-density scan using 38,416 single nucleotide polymorphism markers for 5,285 bulls confirmed 2 previously known major genes on Bos taurus autosomes (BTA) 6 and 14 but revealed few other large effects as discussed by the authors.
About: This article is published in Journal of Dairy Science.The article was published on 2009-06-01 and is currently open access. It has received 224 citations till now. The article focuses on the topics: Quantitative trait locus & Allele.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used the Fortran program findhap.f90 to estimate haplotypes for 43 382 single-nucleotide polymorphisms (SNP) in 1455 Brown Swiss, 40 351 Holstein and 4064 Jersey bulls and cows.
Abstract: Limits to selection and Mendelian sampling (MS) terms can be calculated using haplotypes by summing the individual additive effects on each chromosome. Haplotypes were imputed for 43 382 single-nucleotide polymorphisms (SNP) in 1455 Brown Swiss, 40 351 Holstein and 4064 Jersey bulls and cows using the Fortran program findhap.f90, which combines population and pedigree haplotyping methods. Lower and upper bounds of MS variance were calculated for daughter pregnancy rate (a measure of fertility), milk yield, lifetime net merit (a measure of profitability) and protein yield assuming either no or complete linkage among SNP on the same chromosome. Calculated selection limits were greater than the largest direct genomic values observed in all breeds studied. The best chromosomal genotypes generally consisted of two copies of the same haplotype even after adjustment for inbreeding. Selection of animals rather than chromosomes may result in slower progress, but limits may be the same because most chromosomes will become homozygous with either strategy. Selection on functions of MS could be used to change variances in later generations.

36 citations

Journal ArticleDOI
TL;DR: Initial results show that the genomic estimates were overestimated in both New Zealand and Ireland, and adjustments have since been introduced into their respective national evaluations to reduce the bias.
Abstract: The New Zealand, Australian and Irish dairy industries have used genomic information to enhance their genetic evaluations over the last 2-4 years. The improvement in the accuracy obtained from including genomic information on thousands of animals in the national evaluation system has revolutionised the dairy breeding programs in the three countries. The genomically enhanced breeding values (GEBV) of young bulls are more reliable than breeding values based on parent average, thus allowing the young bulls to be reliably selected and used in the national herd. Traditionally, the use of young bulls was limited and bulls were not used extensively until they were 5 years old when the more reliable progeny test results became available. Using young sires, as opposed to progeny-tested sires, in the breeding program dramatically reduces the generation interval, thereby facilitating an increase in the rate of genetic gain by 40-50%. Young sires have been marketed on their GEBV in the three countries over the last 2-4 years. Initial results show that the genomic estimates were overestimated in both New Zealand and Ireland. Adjustments have since been introduced into their respective national evaluations to reduce the bias. A bias adjustment has been included in the Australian evaluation since it began; however, official genomic evaluations have not been in place as long as in New Zealand and Ireland, so there has been less opportunity to validate if the correction accounts for all bias. Sequencing of the dairy cattle population has commenced in an effort to further improve the genomic predictions and also to detect causative mutations that underlie traits of economic performance.

35 citations

Journal ArticleDOI
TL;DR: The genomic analyses contributed to a better understanding of the genetic control of the reproductive traits HP and NF and provide new selection strategies to improve beef production.
Abstract: Zebu animals () are known to take longer to reach puberty compared with taurine animals (), limiting the supply of animals for harvest or breeding and impacting profitability. Genomic information can be a helpful tool to better understand complex traits and improve genetic gains. In this study, we performed a genomewide association study (GWAS) to identify genetic variants associated with reproductive traits in Nelore beef cattle. Heifer pregnancy (HP) was recorded for 1,267 genotyped animals distributed in 12 contemporary groups (CG) with an average pregnancy rate of 0.35 (±0.01). Disregarding one of these CG, the number of antral follicles (NF) was also collected for 937 of these animals, with an average of 11.53 (±4.43). The animals were organized in CG: 12 and 11 for HP and NF, respectively. Genes in linkage disequilibrium (LD) with the associated variants can be considered in a functional enrichment analysis to identify biological mechanisms involved in fertility. Medical Subject Headings (MeSH) were detected using the MESHR package, allowing the extraction of broad meanings from the gene lists provided by the GWAS. The estimated heritability for HP was 0.28 ± 0.07 and for NF was 0.49 ± 0.09, with the genomic correlation being -0.21 ± 0.29. The average LD between adjacent markers was 0.23 ± 0.01, and GWAS identified genomic windows that accounted for >1% of total genetic variance on chromosomes 5, 14, and 18 for HP and on chromosomes 2, 8, 11, 14, 15, 16, and 22 for NF. The MeSH enrichment analyses revealed significant ( < 0.05) terms associated with HP-"Munc18 Proteins," "Fucose," and "Hemoglobins"-and with NF-"Cathepsin B," "Receptors, Neuropeptide," and "Palmitic Acid." This is the first study in Nelore cattle introducing the concept of MeSH analysis. The genomic analyses contributed to a better understanding of the genetic control of the reproductive traits HP and NF and provide new selection strategies to improve beef production.

35 citations

Journal ArticleDOI
TL;DR: This work evaluated the gain in reliability of genomic predictions, for stature in US Holsteins, when adding selected sequence variants to a pre-existent SNP chip, and found ssGBLUP seems to capture more information than GBLUP and there is less room for extra reliability.

35 citations

Journal ArticleDOI
TL;DR: Integrating the genetic, fertility and sperm phenotype data will accelerate biomarker discovery and validation, improve routine semen testing in bull studs and identify new targets for cost-efficient AI dose optimization approaches such as semen nanopurification.

33 citations

References
More filters
Book
01 Jan 1981
TL;DR: The genetic constitution of a population: Hardy-Weinberg equilibrium and changes in gene frequency: migration mutation, changes of variance, and heritability are studied.
Abstract: Part 1 Genetic constitution of a population: Hardy-Weinberg equilibrium. Part 2 Changes in gene frequency: migration mutation. Part 3 Small populations - changes in gene frequency under simplified conditions. Part 4 Small populations - less simplified conditions. Part 5 Small populations - pedigreed populations and close inbreeding. Part 6 Continuous variation. Part 7 Values and means. Part 8 Variance. Part 9 Resemblance between relatives. Part 10 Heritability. Part 11 Selection - the response and its prediction. Part 12 Selection - the results of experiments. Part 13 Selection - information from relatives. Part 14 Inbreeding and crossbreeding - changes of mean value. Part 15 Inbreeding and crossbreeding - changes of variance. Part 16 Inbreeding and crossbreeding - applications. Part 17 Scale. Part 18 Threshold characters. Part 19 Correlated characters. Part 20 Metric characters under natural selection.

20,288 citations

Journal ArticleDOI
01 Apr 2001-Genetics
TL;DR: It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.
Abstract: Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was simulated with a marker spacing of 1 cM. The markers surrounding every 1-cM region were combined into marker haplotypes. Due to finite population size (Ne = 100), the marker haplotypes were in linkage disequilibrium with the QTL located between the markers. Using least squares, all haplotype effects could not be estimated simultaneously. When only the biggest effects were included, they were overestimated and the accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods that assumed a prior distribution of the variance associated with each chromosome segment increased this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.

6,036 citations

Journal ArticleDOI
TL;DR: Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously, and a blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects.

4,196 citations

Journal ArticleDOI
TL;DR: Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations and genomic prediction improves reliability by tracing the inheritance of genes even with small effects.

1,166 citations