scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Distribution and location of genetic effects for dairy traits

TL;DR: A high-density scan using 38,416 single nucleotide polymorphism markers for 5,285 bulls confirmed 2 previously known major genes on Bos taurus autosomes (BTA) 6 and 14 but revealed few other large effects as discussed by the authors.
About: This article is published in Journal of Dairy Science.The article was published on 2009-06-01 and is currently open access. It has received 224 citations till now. The article focuses on the topics: Quantitative trait locus & Allele.
Citations
More filters
Journal ArticleDOI
TL;DR: Genomic evaluations in Holstein dairy cattle have quickly become more reliable over the last two years in many countries as more animals have been genotyped for 50,000 markers and methods to impute genotypes and compute genomic evaluations were affordable with many more markers.
Abstract: Genomic evaluations in Holstein dairy cattle have quickly become more reliable over the last two years in many countries as more animals have been genotyped for 50,000 markers. Evaluations can also include animals genotyped with more or fewer markers using new tools such as the 777,000 or 2,900 marker chips recently introduced for cattle. Gains from more markers can be predicted using simulation, whereas strategies to use fewer markers have been compared using subsets of actual genotypes. The overall cost of selection is reduced by genotyping most animals at less than the highest density and imputing their missing genotypes using haplotypes. Algorithms to combine different densities need to be efficient because numbers of genotyped animals and markers may continue to grow quickly. Genotypes for 500,000 markers were simulated for the 33,414 Holsteins that had 50,000 marker genotypes in the North American database. Another 86,465 non-genotyped ancestors were included in the pedigree file, and linkage disequilibrium was generated directly in the base population. Mixed density datasets were created by keeping 50,000 (every tenth) of the markers for most animals. Missing genotypes were imputed using a combination of population haplotyping and pedigree haplotyping. Reliabilities of genomic evaluations using linear and nonlinear methods were compared. Differing marker sets for a large population were combined with just a few hours of computation. About 95% of paternal alleles were determined correctly, and > 95% of missing genotypes were called correctly. Reliability of breeding values was already high (84.4%) with 50,000 simulated markers. The gain in reliability from increasing the number of markers to 500,000 was only 1.6%, but more than half of that gain resulted from genotyping just 1,406 young bulls at higher density. Linear genomic evaluations had reliabilities 1.5% lower than the nonlinear evaluations with 50,000 markers and 1.6% lower with 500,000 markers. Methods to impute genotypes and compute genomic evaluations were affordable with many more markers. Reliabilities for individual animals can be modified to reflect success of imputation. Breeders can improve reliability at lower cost by combining marker densities to increase both the numbers of markers and animals included in genomic evaluation. Larger gains are expected from increasing the number of animals than the number of markers.

248 citations

Journal ArticleDOI
TL;DR: The integration of DNA marker technology and genomics into the traditional evaluation system has doubled the rate of genetic progress for traits of economic importance, decreased generation interval, increased selection accuracy, reduced previous costs of progeny testing, and allowed identification of recessive lethals.
Abstract: Genomic selection has revolutionized dairy cattle breeding. Since 2000, assays have been developed to genotype large numbers of single-nucleotide polymorphisms (SNPs) at relatively low cost. The first commercial SNP genotyping chip was released with a set of 54,001 SNPs in December 2007. Over 15,000 genotypes were used to determine which SNPs should be used in genomic evaluation of US dairy cattle. Official USDA genomic evaluations were first released in January 2009 for Holsteins and Jerseys, in August 2009 for Brown Swiss, in April 2013 for Ayrshires, and in April 2016 for Guernseys. Producers have accepted genomic evaluations as accurate indications of a bull's eventual daughter-based evaluation. The integration of DNA marker technology and genomics into the traditional evaluation system has doubled the rate of genetic progress for traits of economic importance, decreased generation interval, increased selection accuracy, reduced previous costs of progeny testing, and allowed identification of recessive lethals.

241 citations

Journal ArticleDOI
TL;DR: A quantitative trait locus (QTL) scan for 14 economically important traits was performed in two commercial Angus populations using 390 microsatellites, 11 single nucleotide polymorphisms (SNPs) and one duplication loci, rejecting the causality of several commercialized DNA tests.
Abstract: To gain insight into the number of loci of large effect that underlie variation in cattle, a quantitative trait locus (QTL) scan for 14 economically important traits was performed in two commercial Angus populations using 390 microsatellites, 11 single nucleotide polymorphisms (SNPs) and one duplication loci. The first population comprised 1769 registered Angus bulls born between 1955 and 2003, with Expected Progeny Differences computed by the American Angus Association. The second comprised 38 half-sib families containing 1622 steers with six post-natal growth and carcass phenotypes. Linkage analysis was performed by half-sib least squares regression with gridqtl or Bayesian Markov chain Monte Carlo analysis of complex pedigrees with loki. Of the 673 detected QTL, only 118 have previously been reported, reflecting both the conservative approach to QTL reporting in the literature, and the more liberal approach taken in this study. From 33 to 71% of the genetic variance and 35 to 56% of the phenotypic variance in each trait was explained by the detected QTL. To analyse the effects of 11 SNPs and one duplication locus within candidate genes on each trait, a single marker analysis was performed by fitting an additive allele substitution model in both mapping populations. There were 53 associations detected between the SNP/duplication loci and traits with -log(10) P(nominal) ≥ 4.0, where each association explained 0.92% to 4.4% of the genetic variance and 0.01% to 1.86% of the phenotypic variance. Of these associations, only six SNP/duplication loci were located within 8 cM of a QTL peak for the trait, with two being located at the QTL peak: SST_DG156121:c.362A>G for ribeye muscle area and TG_X05380:c.422C>T for calving ease. Strong associations between several SNP/duplication loci and trait variation were obtained in the absence of any detected linked QTL. However, we reject the causality of several commercialized DNA tests, including an association between TG_X05380:c.422C>T and marbling in Angus cattle.

215 citations

Journal ArticleDOI
TL;DR: This paper assesses the increase in reliability achieved when combining four Holstein reference populations of 4000 bulls each from European breeding organizations, i.e. UNCEIA, VikingGenetics, DHV-VIT and CRV, into a single large reference population.
Abstract: Size of the reference population and reliability of phenotypes are crucial factors influencing the reliability of genomic predictions. It is therefore useful to combine closely related populations. Increased accuracies of genomic predictions depend on the number of individuals added to the reference population, the reliability of their phenotypes, and the relatedness of the populations that are combined. This paper assesses the increase in reliability achieved when combining four Holstein reference populations of 4000 bulls each, from European breeding organizations, i.e. UNCEIA (France), VikingGenetics (Denmark, Sweden, Finland), DHV-VIT (Germany) and CRV (The Netherlands, Flanders). Each partner validated its own bulls using their national reference data and the combined data, respectively. Combining the data significantly increased the reliability of genomic predictions for bulls in all four populations. Reliabilities increased by 10%, compared to reliabilities obtained with national reference populations alone, when they were averaged over countries and the traits evaluated. For different traits and countries, the increase in reliability ranged from 2% to 19%. Genomic selection programs benefit greatly from combining data from several closely related populations into a single large reference population.

209 citations

Journal ArticleDOI
TL;DR: Evaluation accuracy has increased steadily from including additional bulls with genotypes and traditional evaluations (predictor animals), and further increases in evaluation accuracy are expected because of added predictor animals and more SNP.

208 citations

References
More filters
Book
01 Jan 1981
TL;DR: The genetic constitution of a population: Hardy-Weinberg equilibrium and changes in gene frequency: migration mutation, changes of variance, and heritability are studied.
Abstract: Part 1 Genetic constitution of a population: Hardy-Weinberg equilibrium. Part 2 Changes in gene frequency: migration mutation. Part 3 Small populations - changes in gene frequency under simplified conditions. Part 4 Small populations - less simplified conditions. Part 5 Small populations - pedigreed populations and close inbreeding. Part 6 Continuous variation. Part 7 Values and means. Part 8 Variance. Part 9 Resemblance between relatives. Part 10 Heritability. Part 11 Selection - the response and its prediction. Part 12 Selection - the results of experiments. Part 13 Selection - information from relatives. Part 14 Inbreeding and crossbreeding - changes of mean value. Part 15 Inbreeding and crossbreeding - changes of variance. Part 16 Inbreeding and crossbreeding - applications. Part 17 Scale. Part 18 Threshold characters. Part 19 Correlated characters. Part 20 Metric characters under natural selection.

20,288 citations

Journal ArticleDOI
01 Apr 2001-Genetics
TL;DR: It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.
Abstract: Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was simulated with a marker spacing of 1 cM. The markers surrounding every 1-cM region were combined into marker haplotypes. Due to finite population size (Ne = 100), the marker haplotypes were in linkage disequilibrium with the QTL located between the markers. Using least squares, all haplotype effects could not be estimated simultaneously. When only the biggest effects were included, they were overestimated and the accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods that assumed a prior distribution of the variance associated with each chromosome segment increased this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.

6,036 citations

Journal ArticleDOI
TL;DR: Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously, and a blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects.

4,196 citations

Journal ArticleDOI
TL;DR: Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations and genomic prediction improves reliability by tracing the inheritance of genes even with small effects.

1,166 citations