scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Divergent Evolution of Duplicate Genes Leads to Genetic Incompatibilities Within A. thaliana

30 Jan 2009-Science (American Association for the Advancement of Science)-Vol. 323, Iss: 5914, pp 623-626
TL;DR: It is shown that, in crosses between strains of the plant Arabidopsis thaliana, loci interact epistatically, controlling a recessive embryo lethality, which is explained by divergent evolution occurring among paralogs of an essential duplicate gene.
Abstract: Genetic incompatibilities resulting from interactions between two loci represent a potential source of postzygotic barriers and may be an important factor in evolution when they impair the outcome of interspecific crosses. We show that, in crosses between strains of the plant Arabidopsis thaliana, loci interact epistatically, controlling a recessive embryo lethality. This interaction is explained by divergent evolution occurring among paralogs of an essential duplicate gene, for which the functional copy is not located at the same locus in different accessions. These paralogs demonstrate genetic heterogeneity in their respective evolutionary trajectories, which results in widespread incompatibility among strains. Our data suggest that these passive mechanisms, gene duplication and extinction, could represent an important source of genetic incompatibilities across all taxa.
Citations
More filters
Journal ArticleDOI
TL;DR: The majority of common small-scale polymorphisms as well as many larger insertions and deletions in the A. thaliana pan-genome are described, their effects on gene function, and the patterns of local and global linkage among these variants.
Abstract: The plant Arabidopsis thaliana occurs naturally in many different habitats throughout Eurasia. As a foundation for identifying genetic variation contributing to adaptation to diverse environments, a 1001 Genomes Project to sequence geographically diverse A. thaliana strains has been initiated. Here we present the first phase of this project, based on population-scale sequencing of 80 strains drawn from eight regions throughout the species' native range. We describe the majority of common small-scale polymorphisms as well as many larger insertions and deletions in the A. thaliana pan-genome, their effects on gene function, and the patterns of local and global linkage among these variants. The action of processes other than spontaneous mutation is identified by comparing the spectrum of mutations that have accumulated since A. thaliana diverged from its closest relative 10 million years ago with the spectrum observed in the laboratory. Recent species-wide selective sweeps are rare, and potentially deleterious mutations are more common in marginal populations.

965 citations


Cites background from "Divergent Evolution of Duplicate Ge..."

  • ...thaliana strains can carry reciprocal mutations in members of paralogous genes with redundant functio...

    [...]

Journal ArticleDOI
TL;DR: It is argued that ancient genome doublings could probably have survived only under very specific conditions, but that, whenever established, they might have had a pronounced impact on species diversification, and led to an increase in biological complexity and the origin of evolutionary novelties.
Abstract: Many organisms are currently polyploid, or have a polyploid ancestry and now have secondarily 'diploidized' genomes. This finding is surprising because retained whole-genome duplications (WGDs) are exceedingly rare, suggesting that polyploidy is usually an evolutionary dead end. We argue that ancient genome doublings could probably have survived only under very specific conditions, but that, whenever established, they might have had a pronounced impact on species diversification, and led to an increase in biological complexity and the origin of evolutionary novelties.

914 citations

Journal ArticleDOI
TL;DR: Emergent trends and gaps in understanding are identified, new approaches to more fully integrate genomics into speciation research are proposed, and an integrative definition of the field of speciation genomics is provided.
Abstract: Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.

875 citations

Journal ArticleDOI
TL;DR: It is argued that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst‐outlying loci observed in genome scan approaches – even when these are correlated to environmental variables.
Abstract: Genomic scans of multiple populations often reveal marker loci with greatly increased differentiation between populations. Often this differentiation coincides in space with contrasts in ecological factors, forming a genetic–environment association (GEA). GEAs imply a role for local adaptation, and so it is tempting to conclude that the strongly differentiated markers are themselves under ecologically based divergent selection, or are closely linked to loci under such selection. Here, we highlight an alternative and neglected explanation: intrinsic (i.e. environment-independent) pre- or post-zygotic genetic incompatibilities rather than local adaptation can be responsible for increased differentiation. Intrinsic genetic incompatibilities create endogenous barriers to gene flow, also known as tension zones, whose location can shift over time. However, tension zones have a tendency to become trapped by, and therefore to coincide with, exogenous barriers due to ecological selection. This coupling of endogenous and exogenous barriers can occur easily in spatially subdivided populations, even if the loci involved are unlinked. The result is that local adaptation explains where genetic breaks are positioned, but not necessarily their existence, which can be best explained by endogenous incompatibilities. More precisely, we show that (i) the coupling of endogenous and exogenous barriers can easily occur even when ecological selection is weak; (ii) when environmental heterogeneity is fine-grained, GEAs can emerge at incompatibility loci, but only locally, in places where habitats and gene pools are sufficiently intermingled to maintain linkage disequilibria between genetic incompatibilities, local-adaptation genes and neutral loci. Furthermore, the association between the locally adapted and intrinsically incompatible alleles (i.e. the sign of linkage disequilibrium between endogenous and exogenous loci) is arbitrary and can form in either direction. Reviewing results from the literature, we find that many predictions of our model are supported, including endogenous genetic barriers that coincide with environmental boundaries, local GEA in mosaic hybrid zones, and inverted or modified GEAs at distant locations. We argue that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst-outlying loci observed in genome scan approaches – even when these are correlated to environmental variables. (Resume d'auteur)

503 citations


Cites background from "Divergent Evolution of Duplicate Ge..."

  • ...Recently, genetic incompatibilities have been identified between Arabidopsis thaliana accessions (Bikard et al. 2009; Alcazar et al. 2010)....

    [...]

Journal ArticleDOI
TL;DR: Progress is reviewed in determining the molecular identities and evolutionary histories of several new 'speciation genes' that cause hybrid dysfunction between species of yeast, flies, mice and plants, suggesting that the first steps in the evolution of hybrid dysfunction are not necessarily adaptive.
Abstract: Recently, several new speciation genes have been identified that have contributed to our understanding of the molecular details of the evolution of hybrid dysfunction. This Progress article describes examples of these speciation genes in a range of species and provides insights into the mechanisms that underlie speciation.

501 citations

References
More filters
Journal ArticleDOI
10 Nov 2000-Science
TL;DR: Although duplicate genes may only rarely evolve new functions, the stochastic silencing of such genes may play a significant role in the passive origin of new species.
Abstract: Gene duplication has generally been viewed as a necessary source of material for the origin of evolutionary novelties, but it is unclear how often gene duplicates arise and how frequently they evolve new functions. Observations from the genomic databases for several eukaryotic species suggest that duplicate genes arise at a very high rate, on average 0.01 per gene per million years. Most duplicated genes experience a brief period of relaxed selection early in their history, with a moderate fraction of them evolving in an effectively neutral manner during this period. However, the vast majority of gene duplicates are silenced within a few million years, with the few survivors subsequently experiencing strong purifying selection. Although duplicate genes may only rarely evolve new functions, the stochastic silencing of such genes may play a significant role in the passive origin of new species.

4,264 citations

Journal ArticleDOI
TL;DR: The data support the utility of A. thaliana as a model for evolutionary functional genomics and suggest there is a genome-wide excess of rare alleles and too much variation between genomic regions in the level of polymorphism.
Abstract: We resequenced 876 short fragments in a sample of 96 individuals of Arabidopsis thaliana that included stock center accessions as well as a hierarchical sample from natural populations. Although A. thaliana is a selfing weed, the pattern of polymorphism in general agrees with what is expected for a widely distributed, sexually reproducing species. Linkage disequilibrium decays rapidly, within 50 kb. Variation is shared worldwide, although population structure and isolation by distance are evident. The data fail to fit standard neutral models in several ways. There is a genome-wide excess of rare alleles, at least partially due to selection. There is too much variation between genomic regions in the level of polymorphism. The local level of polymorphism is negatively correlated with gene density and positively correlated with segmental duplications. Because the data do not fit theoretical null distributions, attempts to infer natural selection from polymorphism data will require genome-wide surveys of polymorphism in order to identify anomalous regions. Despite this, our data support the utility of A. thaliana as a model for evolutionary functional genomics.

998 citations

Journal ArticleDOI
TL;DR: An evolutionary model that simulates the duplication dynamics of genes, considering genome-wide duplication events and a continuous mode of gene duplication is presented and it is shown that gene loss is strikingly different for large-scale and small-scale duplication Events and highly biased toward certain functional classes.
Abstract: Recent analysis of complete eukaryotic genome sequences has revealed that gene duplication has been rampant. Moreover, next to a continuous mode of gene duplication, in many eukaryotic organisms the complete genome has been duplicated in their evolutionary past. Such large-scale gene duplication events have been associated with important evolutionary transitions or major leaps in development and adaptive radiations of species. Here, we present an evolutionary model that simulates the duplication dynamics of genes, considering genome-wide duplication events and a continuous mode of gene duplication. Modeling the evolution of the different functional categories of genes assesses the importance of different duplication events for gene families involved in specific functions or processes. By applying our model to the Arabidopsis genome, for which there is compelling evidence for three whole-genome duplications, we show that gene loss is strikingly different for large-scale and small-scale duplication events and highly biased toward certain functional classes. We provide evidence that some categories of genes were almost exclusively expanded through large-scale gene duplication events. In particular, we show that the three whole-genome duplications in Arabidopsis have been directly responsible for >90% of the increase in transcription factors, signal transducers, and developmental genes in the last 350 million years. Our evolutionary model is widely applicable and can be used to evaluate different assumptions regarding small- or large-scale gene duplication events in eukaryotic genomes.

844 citations

Journal ArticleDOI
TL;DR: The finding that plant immune-system genes are involved in hybrid necrosis suggests that selective pressures related to host–pathogen conflict might cause the evolution of gene flow barriers in plants.
Abstract: Epistatic interactions between genes are a major factor in evolution. Hybrid necrosis is an example of a deleterious phenotype caused by epistatic interactions that is observed in many intra- and interspecific plant hybrids. A large number of hybrid necrosis cases share phenotypic similarities, suggesting a common underlying mechanism across a wide range of plant species. Here, we report that approximately 2% of intraspecific crosses in Arabidopsis thaliana yield F1 progeny that express necrosis when grown under conditions typical of their natural habitats. We show that several independent cases result from epistatic interactions that trigger autoimmune-like responses. In at least one case, an allele of an NB-LRR disease resistance gene homolog is both necessary and sufficient for the induction of hybrid necrosis, when combined with a specific allele at a second locus. The A. thaliana cases provide insights into the molecular causes of hybrid necrosis, and serve as a model for further investigation of intra- and interspecific incompatibilities caused by a simple epistatic interaction. Moreover, our finding that plant immune-system genes are involved in hybrid necrosis suggests that selective pressures related to host–pathogen conflict might cause the evolution of gene flow barriers in plants.

505 citations

Journal ArticleDOI
TL;DR: The distribution of the number of incompatibilities as a function of divergence time between allopatric taxa as well as the distribution of waiting times to speciation by postzygotic isolation are derived.
Abstract: Hybrid sterility and inviability often result from the accumulation of substitutions that, while functional on their normal genetic backgrounds, cause a loss of fitness when brought together in hybrids. Previous theory has shown that such Dobzhansky-Muller incompatibilities should accumulate at least as fast as the square of the number of substitutions separating two species, the so-called snowball effect. Here we explicitly describe the stochastic accumulation of these incompatibilities as a function of time. The accumulation of these incompatibilities involves three levels of stochasticity: (1) the number of substitutions separating two allopatric lineages at a given time; (2) the number of incompatibilities resulting from these substitutions; and (3) the fitness effects of individual incompatibilities. Previous analyses ignored the stochasticity of molecular evolution (level 1) as well as that due to the variable effects of incompatibilities (level 3). Here we approximate the full stochastic process characterizing the accumulation of hybrid incompatibilities between pairs of loci. We derive the distribution of the number of incompatibilities as a function of divergence time between allopatric taxa as well as the distribution of waiting times to speciation by postzygotic isolation. We provide simple approximations for the mean and variance of these waiting times. These results let us estimate. albeit crudely, the probability, p, that two diverged sites from different species will contribute to hybrid sterility or inviability. Our analyses of data from Drosophila and Bombina suggest that p is generally very small, on the order of 10(-6) or less.

499 citations

Trending Questions (1)
How to get duplicate copy of mutation certificate in Bihar?

This interaction is explained by divergent evolution occurring among paralogs of an essential duplicate gene, for which the functional copy is not located at the same locus in different accessions.